

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 01.11.2025

Ref: EWTGUSE110.14

SE 110.14 Courbe de flexion élastique d?une poutre (Réf. 022.11014)

Démonstration du théorème de Maxwell-Betti, Nécessite bâti SE 112

Les poutres sont des éléments de construction importants des machines et des bâtiments, susceptibles de se déformer lorsquelles sont soumises à une charge.

Sur les poutres, la charge est appliquée dans la direction perpendiculaire à laxe et entraîne leur fléchissement. Pour déterminer le fléchissement de poutres dans la zone où le comportement du matériau est élastique linéaire, on utilise la courbe de flexion élastique également appelée ligne élastique.

En utilisant les coefficients dinfluence et la loi de transposition de Maxwell-Betti, on peut calculer le fléchissement de la poutre à nimporte quel endroit de la poutre.

Le SE 110.14 permet de déterminer la déformation dune poutre en flexion.

On étudie pour cela une poutre avec des charges différentes, des conditions dappui différentes et une surdétermination statique.

La courbe de flexion élastique est déterminée par des calculs et vérifiée de manière expérimentale.

Le montage expérimental comprend trois poutres composées de matériaux différents.

Deux appuis articulés et un appui fixe avec dispositif de serrage sont à disposition.

Les comparateurs à cadran enregistrent les déformations conséquentes de la poutre.

Les pièces de lessai sont disposées de manière claire, et bien protégées dans un système de rangement.

Lensemble du montage expérimental est réalisé dans le bâti SE 112.

Contenu didactique / Essais

- courbe de flexion élastique avec différentes charges
- courbe de flexion élastique avec différentes conditions dappui
- démonstration de léquation de Maxwell-Betti
- courbe de flexion et forces dappui pour des systèmes hyperstatiques

Les grandes lignes

- poutre en différents matériaux: acier, laiton et aluminium

Les caractéristiques techniques

Poutre

- acier, Lxlxh: 1000x20x3mm - laiton, Lxlxh: 1000x20x6mm - aluminium, Lxlxh: 1000x20x6mm

Poids

- 2x 1N (suspente)
- 10x 1N
- 6x 5N

Measuring ranges

Date d'édition : 01.11.2025

- déplacement: 0...20mm - graduation: 0,01mm

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 42kg (total)

Liste de livraison

3 poutres

2 appuis articulés

1 appui fixe avec dispositif de serrage

2 comparateurs à cadran avec support

1 jeu de poids

1 système de rangement avec mousse de protection

1 documentation didactique

Accessoires disponibles et options

SE112 - Bâti de montage

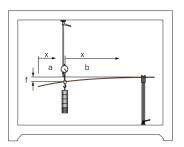
Produits alternatifs

SE110.47 - Méthodes de détermination de la courbe de flexion élastique

WP100 - Déformation de barres soumises à une flexion ou à une torsion

WP950 - Déformation de poutres droites

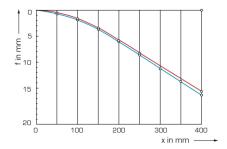
Catégories / Arborescence


Techniques > Mécanique > Résistance des matériaux > Déformations élastiques

Formations > STI2D > Architecture & Construction

Formations > STI2D > Innovation Technologique & Eco Conception

Formations > STI2D > Tronc Commun



Date d'édition : 01.11.2025

Date d'édition : 01.11.2025

Options

Ref: EWTGUSE112

SE 112 Bâti de montage pour la gamme SE 110.xx (Réf. 022.11200)

Montages simples, clairs pour des essais de statique, de résistance des matériaux, de dynamique

Le bâti de montage SE 112 permet deffectuer des montages expérimentaux clairs et simples en rapport avec les domaines de la statique, de la résistance des matériaux et de la dynamique.

Le SE 112 se compose de profilés en acier qui sont vissés à un bâti de montage.

Deux pieds latéraux garantissent une position stable.

Le montage du bâti à partir de différents éléments seffectue facilement et rapidement, ce qui requiert peu de manipulations.

Les grandes lignes

- bâti pour les montages expérimentaux relatifs à la statique, la résistance des matériaux et la dynamique

Les caractéristiques techniques

Date d'édition: 01.11.2025

Bâti de montage en profilés en acier - ouverture du bâti lxh: 1250x900mm - largeur des rainures du profilé: 40mm

Dimensions et poids

Lxlxh: 1400x400x1130mm (monté) Lxlxh: 1400x400x200mm (non monté)

Poids: env. 32kg

Liste de livraison

1 bâti de montage en pièces détachées

1 jeu de vis avec clé pour vis à six pans creux

1 mode demploi

Accessoires disponibles et options WP300.09 - Chariot de laboratoire

en option

Conditions déquilibre

SE 110.50 Câble soumis au poids propre

SE 110.53 Équilibre dans un système plan isostatique

Ponts, poutres, arcs

SE 110.12 Lignes dinfluence au niveau de la poutre cantilever

SE 110.16 Arc parabolique

SE 110.17 Arc à trois articulations

SE 110.18 Forces au niveau dun pont suspendu

Forces et déformation dans un treillis

SE 110.21 Forces dans différents treillis plans

SE 110.22 Forces dans un treillis hyperstatique

SE 110.44 Déformation dun treillis

Déformations élastiques et permanentes

SE 110.14 Courbe de flexion élastique dune poutre

SE 110.20 Déformation des bâtis

SE 110.29 Torsion de barres

SE 110.47 Méthodes de détermination de la courbe de flexion élastique

SE 110.48 Essai de flexion, déformation plastique

Stabilité et flambement

SE 110.19 Étude de problèmes de stabilité simples

SE 110.57 Flambement de barres

Vibrations sur une poutre en flexion

SE 110.58 Vibrations libres sur une poutre en flexion

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 01.11.2025

Ref: EWTGUSE110.30

SE 110.30 Comparateurs à cadran, détermination des déformations (Réf. 022.11030)

Nécessite bâti SE 112

Ce jeu de comparateurs à cadran mécaniques permet de mesurer avec précision les déplacements mécaniques avec de nombreux montages expérimentaux.

Les fléchissements et les décalages peuvent être mesurés au même titre que les distances et bien d'autres. Les comparateurs peuvent être utilisés avec pratiquement tous les essais réalisés avec le bâti d'essai universel SE 112.

Leur fixation rapide et sûre se fait par des éléments de serrage rapide.

Le serrage offre en outre une importante plage de réglage.

Contenu didactique / Essais

Utilisable pour toutes les expérimentations exigeant une mesure précise du fléchissement, des déplacements et autres courses

Les grandes lignes

- Comparateurs à cadran pour la mesure des déformations et des déplacements lors des expérimentations mécaniques

Les caractéristiques techniques Compteur de déplacement

- 0...25mm et 0...50mm
- division: 0,01mm

Plage de réglage du serrage

- 0...100mm et 0...500mm

Dimensions et poids Poids: env. 3kg

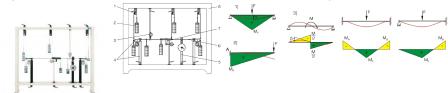
Liste de livraison

2 comparateurs à cadran, 2 éléments de serrage

requis

SE 112 Bâti de montage

Produits alternatifs



Date d'édition : 01.11.2025

Ref: EWTGUSE110.47

SE 110.47 Méthodes de détermination de la courbe de flexion élastique (Réf. 022.11047)

Ligne de flexion d'une poutre; principe du travail virtuel /analogie de Mohr, Nécessite bâti SE 112

Les poutres sont des éléments importants de la construction mécanique et du bâtiment pouvant se déformer lorsquils sont soumis à une charge.

Avec une poutre simple, il est possible de prédire ces déformations à laide de différentes méthodes, p. ex. selon le principe du travail virtuel.

La poutre étudiée dans le SE 110.47 peut être montée de différentes manières.

Deux appuis avec dispositif dencastrement et un appui articulé avec dynamomètre à cadran sont disponibles afin de réaliser des systèmes isostatiques ou hyperstatiques.

Les deux appuis avec dispositif dencastrement sont pourvus de comparateurs à cadran et peuvent également être utilisés comme appuis articulés.

Ces comparateurs à cadran servent à déterminer langle dinclinaison de la poutre sur lappui.

Un 3^ème^ comparateur à cadran enregistre le fléchissement de la poutre à lendroit défini.

De plus, un dispositif génère un moment de flexion à un endroit défini de la poutre.

Un quatrième comparateur à cadran enregistre langle dinclinaison du dispositif.

La poutre est chargée de poids (charge ponctuelle et couple de forces pour générer le moment de flexion).

Le couple dencastrement sur les appuis peut être déterminé à laide de poids.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement.

Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- courbes de flexion élastique pour poutres isostatiques ou hyperstatiques soumises à une charge
- détermination de la courbe de flexion élastique dune poutre à laide des méthodes suivantes
- -- principe du travail virtuel (calcul)
- -- analogie de Mohr (méthode de Mohr concernant le diagramme des moments; approche graphique)
- application du principe de superposition de la mécanique
- détermination des éléments suivants
- -- fléchissement maximal de la poutre
- -- inclinaison de la poutre
- comparaison entre les valeurs calculées et mesurées pour langle dinclinaison et le fléchissement

Les grandes lignes

- comparaison des différentes méthodes de détermination de la courbe de flexion élastique: travail virtuel, analogie de Mohr
- systèmes isostatiques et hyperstatiques
- conditions de charge possibles: charge ponctuelle ou moment de flexion

Les caracteristiques techniques

Poutre

longueur: 1000mmsection: 20x4mmmatériau: acier

Poids

- 7x 1N (suspentes)
- 28x 1N
- 21x 5N

Date d'édition: 01.11.2025

Measuring ranges

- force: ±50N, graduation: 1N

- déplacement: 0...20mm, graduation: 0,01mm

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 42kg (total)

Liste de livraison

3 poutres

2 appuis avec dispositif dencastrement

1 appui avec dynamomètre à cadran

1 dispositif de génération du moment de flexion

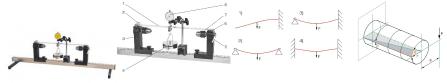
1 jeu de poids

3 poulies de renvoi avec fixation

3 câbles

2 comparateurs à cadran avec support

1 système de rangement avec mousse de protection


1 documentation didactique

Accessoires disponibles et options SE112 - Bâti de montage

Ref : EWTGUWP100

WP 100 Déformation de barres soumises à une flexion ou à une torsion (Réf. 020.10000)

Influence du matériau, de la section et de la longueur d?encastrement sur les déformations

La flexion et la torsion constituent des charges typiques pour les composants.

Les contraintes et déformations qui en résultent peuvent entraîner une défaillance du composant.

Différents facteurs jouent ici un rôle, p. ex. le matériau, la section, la longueur dencastrement et le type dappui.

Le WP 100 étudie linfluence de ces facteurs sur la déformation dune barre soumise à une charge de flexion ou à un moment de torsion.

Un jeu de barres dessai est assemblé afin de pouvoir comparer directement les résultats de mesure.

La barre étudiée est fixée sur deux supports mobiles et chargée des poids.

Les déformations qui en résultent sont enregistrées par un comparateur à cadran.

Les supports contiennent des mandrins permettant de fixer les barres de torsion et des appuis pour les barres lors de lessai de flexion.

Les appuis offrent différentes possibilités dencastrement permettant détudier les montages isostatiques ou hyperstatiques.

Le moment de torsion est déclenché à laide dun dispositif sur un support.

Le point dapplication de la charge utilisé pour générer le moment de flexion peut être déplacé.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement.

Lensemble du montage expérimental est monté sur le bâti.

Contenu didactique / Essais

- essais de flexion

détermination du module délasticité

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 01.11.2025

systèmes isostatiques (poutre sur 2 supports; poutre en porte-à-faux)

systèmes hyperstatiques (poutre à double encastrement)

déformation dune poutre en fonction de matériau, géométrie (largeur du profil, hauteur du profil, longueur), type et espacement de lappui

établissement des rapports proportionnels pour la déformation

essais de torsion

détermination du module de cisaillement de différents matériaux angle de torsion en fonction de longueur dencastrement, diamètre de la barre établissement des rapports proportionnels pour langle de torsion

Les grandes lignes

- déformation élastique de poutres isostatiques et hyperstatiques soumises à une charge de flexion
- torsion élastique de barres rondes soumises à un moment de torsion
- influence du matériau, de la section et de la longueur dencastrement sur les déformations

Les caractéristiques techniques

17 barres pour les essais de flexion

- matériau: aluminium, acier, laiton, Cu
- hauteur pour Lxl 510x20mm: H=3?10mm (alu.)
- largeur pour Lxh 510x5mm: B=10?30mm (alu.)
- longueur pour lxh 20x4mm: L=210?510mm (alu.)
- Lxlxh: 20x4x510mm (aluminium, acier, laiton, Cu)
- Lxlxh: 10x10x510mm (aluminium)

22 barres de torsion

- matériau: aluminium, acier, laiton, Cu
- longueur pour Ø 10mm: 50?640mm (alu.)
- ØxL: 10x50mm/10x340mm (aluminium, acier, Cu, laiton)
- diamètre pour L=50/340mm: Ø 5?12mm (acier)

Comparateur à cadran

- 0?10mm, graduation: 0,01mm Ruban gradué, graduation: 0,01m

Poids

- 1x 100g (suspente)

- 1x 100g, 1x 400g, 1x 500g, 1x 900g

Dimensions et poids

Lxlxh: 1000x250x200mm

Poids: env. 18kg

Lxlxh: 1170x480x207mm (système de rangement)

Poids: env. 12kg (système de rangement)

Liste de livraison

1 bâti

2 supports

1 dispositif de génération du moment de torsion

17 barres pour essai de flexion

22 barres de torsion

1 comparateur à cadran avec support, 1 ruban gradué

1 jeu de poids

2 clés pour vis à six pans creux

1 système de rangement avec mousse de protection

1 documentation didactique

Accessoires disponibles et options

W

Date d'édition : 01.11.2025

Ref: EWTGUSE200.11

SE 200.11 MEC Courbes de flexion élastique de poutre pour SE 200 (Réf. 022.20011)

pour différentes charges; comparaison de différentes méthodes

