

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM162

HM 162 Canal d'essai hydraulique 309x450mm, circuit eau fermé, inclinaison réglable (Réf. 070.16200)

Si 7.5m (1xHM162.10+1xHM162.20) / 10m (2xHM162.10+1xHM162.20) / 12.5m (3xHM162.10+2xHM162.20)

Dans les domaines de lenseignement et de la recherche, les canaux dessai sont utilisés pour observer et analyser les phénomènes découlement dans des canaux à léchelle du laboratoire.

Par exemple, les structures de contrôle pour la régulation découlement et diverses méthodes de mesure de lécoulement sont démontrées.

Le canal dessai HM 162 possède un circuit deau fermé et une section expérimentale extensible.

Les parois latérales de la section dessai sont en verre trempé permettant lobservation optimale des essais.

Tous les composants en contact avec leau sont fabriqués dans des matériaux résistants à la corrosion.

Lélément dentrée est conçu de telle manière à minimiser les turbulences de lécoulement à son arrivée dans la section dessai.

Afin de permettre la simulation de chutes et lajustage dun écoulement uniforme ayant une profondeur constante, il est possible dajuster en continu linclinaison du canal dessai.

De nombreux modèles sont disponibles en tant quaccessoires, tels que des déversoirs, piles, canaux de mesure ou un générateur de vagues.

Ce qui permet de réaliser un ensemble dessais très complet.

La plupart des modèles se vissent rapidement et de manière sécurisée au fond de la section dessai.

Le canal dessai est commandé par IAPI via un écran tactile.

Grâce à un routeur intégré, le canal dessai peut être alternativement commandé et exploité par un dispositif terminal.

Linterface utilisateur peut également être affichée sur des terminaux supplémentaires (screen mirroring).

Via IAPI, les valeurs de mesure peuvent être enregistrées en interne.

Laccès aux valeurs de mesure enregistrées est possible à partir des terminaux via WLAN avec routeur intégré/connexion LAN au réseau propre au client.

Via connexion LAN directe, les valeurs de mesure peuvent également être transmises à un PC afin dy être exploitées à laide du logiciel GUNT.

Lutilisation dune caméra est nécessaire pour lobservation des essais dans le cadre de lapprentissage à distance.

Contenu didactique / Essais

- avec les modèles disponibles comme accessoires, on étudie les phénomènes suivants écoulement uniforme et écoulement non uniforme

formules de débit

changement découlement (ressaut)

dissipation dénergie (ressaut, bassin damortissement)

écoulement par des ouvrages de contrôle: déversoirs (à paroi mince, à crête déversante, à crête arrondie)

écoulement par des ouvrages de contrôle: écoulement en dessous de vannes

canal jaugeur

pertes locales dues à des obstacles écoulement non stationnaire: vagues

> GSDE s.a.r.l. 181 Rue Franz Liszt - F 73000 CHAMBERY

Date d'édition: 15.12.2025

pilots vibrants

transport des sédiments

- screen mirroring: mise en miroir de linterface utilisateur sur des terminaux navigation dans le menu indépendante de la surface affichée sur lécran tactile différents niveaux dutilisateurs sélectionnables sur le terminal: pour lobservation des essais ou pour la commande et lutilisation

Les grandes lignes

- essais des principes de base aux projets de recherche, section dessai disponibles de 5m, 7,5m, 10m à 12,5m
- commande de linstallation par API intégré
- un routeur intégré pour lexploitation et le contrôle via un dispositif terminal et pour le screen mirroring sur des terminaux supplémentaires: PC, tablette, smartphone
- modèles de tous les domaines du génie hydraulique disponibles comme accessoires

Les caracteristiques techniques

Section dessai

- longueur possible: 5m-7,5m-10m-12,5m
- section découlement lxh: 309x450mm
- système dajustage de linclinaison: -0,5?+2,5%
- 2 réservoirs, en matière plastique renforcée de fibres de verre, 1100L chacun

Pompe

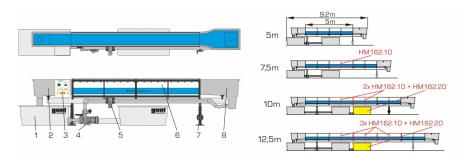
- puissance absorbée: 4kW

débit de refoulement max.: 132m3/h
hauteur de refoulement max.: 16,1m
vitesse de rotation: 1450min-1

Plages de mesure

- débit: 5,4?130m3/h

400V, 50Hz,


Catégories / Arborescence

Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Écoulement dans des canaux à surface libre

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 15.12.2025

Date d'édition : 15.12.2025

Options

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 15.12.2025

Ref: EWTGUHM162.10

HM 162.10 Élément de rallonge du canal d'essai, 2,5m (Réf. 070.16210)

En fonction de la longueur rajouter des réservois d'eau HM162.20

Description:

La section dessai du canal dessai HM 162 peut être agrandie par ladjonction déléments de rallonge HM 162.10 par étapes de 2,5m.

La longueur maximale est 12,5m.

Les éléments de rallonge sont montés directement au moment de linstallation du canal dessai.

Il nest pas possible de les monter plus tard.

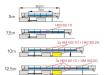
Les parois latérales des éléments sont en verre trempé permettant lobservation optimale des essais.

Chaque élément a dix trous taraudés répartis de manière homogène au fond pour le montage de modèles ou la mesure du niveau deau par la pression.

Sur les parois latérales, il y a des rails de guidage pour support pour instruments HM 162.59 disponible en option. En cas des sections dessai de 10m ou 12,5m, un réservoir deau supplémentaire HM 162.20 est nécessaire afin que la quantité deau disponible soit toujours suffisante.

Caractéristiques techniques Section découlement lxh: 309x450mm longueur: 2,5m

Dimensions et poids Lxlxh: 2500x540x1070mm


Poids: env. 400kg

Ref: EWTGUHM162.20

HM 162.20 Réservoir d'eau 1100L supplémentaire (Réf. 070.16220)

en cas d'extension de la section d'essai de HM 162

Le réservoir deau MH 162.20 est nécessaire en cas dextension du canal dessai à une longueur de section dessai supérieure afin que la quantité deau disponible soit toujours suffisante.

Le réservoir deau est réalisé en matière plastique renforcée de fibres de verre et muni dun couvercle en aluminium

La surface de couvercle est antidérapante, ce qui permet de marcher sur les réservoirs.

Un réservoir supplémentaire HM 162.20 est nécessaire en cas dextension de la longueur de la section déssai à 10m ou 12,5m.

Étant donné que le canal dessai possède déjà deux réservoirs, leur nombre est porté à trois avec la longueur de la section dessai de 10m ou 12,5m.

Date d'édition: 15.12.2025

Caractéristiques techniques

Réservoir deau

Lxlxh: 2230x1000x780mm

matériau: matière plastique renforcée de fibres de verre

contenu util: 1000L

Couvercle

Lxlxh: 2000x1000x5mm matériau: aluminium

Dimensions et poids

Lxlxh: 2230x1000x785mm

Poids: env. 80kg

Ref: EWTGUHM162.29

HM 162.29 Vanne plane (Réf. 070.16229)

écoulement dénoyé (libre) et écoulement noyé (avec retenue) sous une vanne plane

Les vannes planes font partie des ouvrages de contrôle mobiles; l'écoulement les traverse par dessous. Une vanne plane est une paroi verticale qui produit une retenue dans un canal traversé par un écoulement. Les vannes planes sont souvent utilisées pour garantir une profondeur d'évacuation minimum de l'eau en amont en cas de débit variable, p.ex. pour la navigation.

L'ouverture de la vanne plane HM 162.29 et donc la décharge en dessous de la vanne peut être réglée manuellement à l'aide d'une roue à main.

Contenu didactique / Essais

- écoulement dénoyé (libre) sous une vanne plane
- écoulement noyé (avec retenue) sous une vanne plane
- observation de la contraction de jet (Vena Contracta)
- observation des ressauts dans l'eau en aval

Les grandes lignes

- Écoulement par dessous une vanne plane

Les caractéristiques techniques

Vanne

- plaque de déversoir en PVC
- ajustage de la hauteur: 0...150mm

Dimensions et poids Lxlxh: 370x263x710mm

Poids: env. 5kg

Liste de livraison 1 vanne plane 1 jeu d'accessoires

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

1 notice

Ref: EWTGUHM162.30

HM 162.30 Jeu de déversoirs à paroi mince, quatre types (Réf. 070.16230)

analyses sur un déversoir à plaques ventilé

Les déversoirs à paroi mince font partie des ouvrages de contrôle qui retiennent de manière définie l'eau d'un canal.

Ils sont en outre souvent utilisés pour déterminer le débit d'un canal.

Le HM 162.30 comprend quatre déversoirs à paroi mince différents.

Le déversoir rectangulaire avec option d'aération est utilisé pour démontrer les bases de l'écoulement au travers de déversoirs à paroi mince.

Les autres déversoirs sont des déversoirs de mesure typiques ayant une ouverture bien définie: triangulaire sur le déversoir de Thomson, rectangulaire sur le déversoir de Rehbock et en forme de trapèze sur le déversoir de Cipoletti.

Le déversoir à étudier est placé dans un bâti.

Le bâti est installé dans la section d'essai du HM 162.

Contenu didactique / Essais

- nappe noyée et nappe dénoyée sur un déversoir à paroi mince
- influence de l'aération sur les processus d'écoulement d'un déversoir à paroi mince observation du décollement de la lame sur le déversoir à paroi mince

Avec une jauge à eau:

- déversoirs à paroi mince comme déversoirs de mesure détermination du coefficient de décharge comparaison des déversoirs de mesure (Cipoletti, Rehbock, Thomson)
- détermination du débit
- comparaison entre débit théorique et débit mesuré

Les grandes lignes

- Écoulement par des déversoirs à paroi mince
- Déversoir de mesure typique

Les caractéristiques techniques

Déversoir de Thomson

- ouverture de déversoir triangulaire

Déversoir de Rehbock

- ouverture de déversoir rectangulaire

Déversoir de Cipoletti

- ouverture de déversoir en trapèze

Dimensions et poids

Date d'édition: 15.12.2025

Lxlxh: 620x304x370mm (bâti)

Poids total: env. 13kg

Liste de livraison

4 plaques de déversoir, 1 bâti, 1 jeu d'accessoires, 1 notice

Accessoires requis:

HM 162 Canal d'essai 309x450mm

Ref: EWTGUHM162.31

HM 162.31 Déversoir à seuil épais ,nappe noyée et dénoyée (Réf. 070.16231)

Influence des arêtes du déversoir sur les processus d'écoulement

Les déversoirs à seuil épais font partie des ouvrages de contrôle.

On a souvent une nappe noyée, c'est-à-dire que le déversoir est entièrement immergé dans l'eau en aval. Les déversoirs à seuil épais peuvent aussi, dans certaines conditions, être utilisés comme déversoirs de mesure.

HM 162.31 comprend un corps de déversoir parallélépipédique à arêtes vives.

Deux éléments supplémentaires peuvent être fixés sur le corps de déversoir afin d'obtenir des arêtes arrondies

La nappe dénoyée et la nappe noyée peuvent être bien démontrés.

L'impact de la crête de déversoir à arêtes vives ou arrondies sur la lame déversante est bien visible.

Contenu didactique / Essais

- nappe noyée et nappe dénoyée sur un déversoir à seuil épais
- influence des arêtes du déversoir sur les processus d'écoulement
- -- contour à arêtes vives
- -- contour à arêtes arrondies

Avec une jauge à eau:

- détermination du coefficient de décharge
- détermination du débit
- comparaison entre débit théorique et débit mesuré

Les grandes lignes

- Écoulement par des déversoirs à seuil épais

Les caractéristiques techniques Corps de déversoir

- matériau: PVC

Dimensions et poids Lxlxh: 780x304x250mm

Poids: env. 17kg

Liste de livraison

1 corps de déversoir, 2 éléments pour arêtes de déversoir arrondies, 1 jeu d'accessoires, 1 notice GSDE s.a.r.l.

Date d'édition: 15.12.2025

Ref: EWTGUHM162.32

HM 162.32 Déversoir à crête arrondie avec deux évacuateurs (Réf. 070.162.32)

En forme saut de ski et pente raide. Nécessite le HM 162.35

Les déversoirs à crête arrondie sont des déversoirs fixes qui font partie des ouvrages de contrôle.

Lorsqu'un corps de déversoir est submergé, il se produit un changement d'écoulement: ce dernier devient supercritique.

L'écoulement supercritique présente une énergie cinétique élevée à l'extrémité du dos de déversoir.

La part de cette énergie qui est excédentaire peut provoquer des dommages.

C'est pourquoi il faut dissiper de l'énergie, p.ex. en utilisant un évacuateuren forme de saut de ski ou un bassin d'amortissement.

Le HM 162.32 comprend un déversoir à crête arrondie avec deux évacuateurs différents (en forme de saut de ski et à pente raide).

D'autres possibilités de dissipation d'énergie peuvent être étudiées avec les accessoires disponibles HM 162.35 Éléments de dissipation d'énergie.

Contenu didactique / Essais

- influence de la l'évacuateur sur les processus d'écoulement
- -- évacuateur en forme de saut de ski
- -- évacuateur à pente raide
- position du ressaut en fonction du niveau de l'eau en aval

Avec une jauge à eau et un gradient de vitesse:

- détermination de la profondeur conjuguée
- détermination du débit et de la hauteur
- comparaison entre débit théorique et débit mesuré

Les grandes lignes

- Écoulement par des déversoirs à crête arrondie

Les caractéristiques techniques Caractéristiques techniques Déversoir avec évacuateur à pente raide

- Lxlxh: 350x309x310mm

Déversoir avec évacuateur en forme de saut de ski

- Lxlxh: 410x309x310mm

Dimensions et poids Poids total: env. 9kg

Liste de livraison

1 déversoir à crête arrondie, 2 évacuateurs, 1 jeu d'accessoires, 1 notice

Accessoires disponibles et options HM162.35 - Éléments de dissipation d'énergie

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM162.33

HM 162.33 Déversoir cunéiforme (Réf. 070.16233)

Les déversoirs cunéiformes font partie des ouvrages de contrôle.

Ils font partie des déversoirs à seuil épais.

La forme triangulaire du déversoir présente différents avantages; la faiblesse des atterrissements devant le déversoir en fait partie.

Une partie du transport des sédiments dans le canal peut s'écouler au travers du déversoir.

En outre, les créatures aquatiques arrivent souvent à traverser ce déversoir en amont.

Le HM 162.33 est un déversoir cunéiforme selon E. S. Crump; il présente des inclinaisons définies du côté de l'écoulement incident et du côté de l'écoulement sortant.

Ce déversoir dit de Crump est utilisé essentiellement comme seuil.

Les seuils servent à réduire la vitesse d'écoulement afin de prévenir l'érosion.

Un seuil est bien dimensionné par rapport au débit existant lorsque aucun ressaut ne se produit.

Contenu didactique / Essais

- nappe noyée et nappe dénoyée sur un déversoir cunéiforme
- observation des ressauts dans l'eau en aval
- débit sur un seuil

Avec une jauge à eau:

- détermination du débit
- comparaison entre débit théorique et débit mesuré

Les grandes lignes

- Déversoir cunéiforme selon E. S. Crump

Les caractéristiques techniques

Corps de déversoir

- en PVC
- inclinaison côté écoulement incident: 1:2
- inclinaison côté écoulement sortant: 1:5

Dimensions et poids

Lxlxh: 530x304x70mm

Poids: env. 5kg

Liste de livraison

1 déversoir cunéiforme, 1 jeu d'accessoires, 1 notice

Date d'édition: 15.12.2025

Ref: EWTGUHM162.34

HM 162.34 Déversoir à crête arrondie avec mesure de pression (Réf. 070.16234)

Chute dénoyée avec tableau de manomètres pour la visualisation des pressions

Les déversoirs à crête arrondie sont des déversoirs fixes qui font partie des ouvrages de contrôle.

Ils sont souvent utilisés pour retenir les eaux d'une rivière.

Le déversoir lui-même est constitué d'un corps de barrage massif.

Les contours extérieurs du déversoir ont plus ou moins la forme d'un triangle.

Le dos de déversoir est souvent conçu de manière à favoriser l'écoulement, afin d'atteindre un débit Q maximum.

Le HM 162.34 permet d'étudier la répartition de la pression le long du dos de déversoir.

La mesure de la pression s'effectue par des orifices qui sont perpendiculaires à la surface du dos de déversoir. Les hauteurs de pression sont affichées directement sur les tubes de manomètre intégrés.

Contenu didactique / Essais

- déversoir à profil hydrodynamique sur le déversoir à crête arrondie
- répartition de la pression le long du dos de déversoir à des débits différents
- -- décollement de la lame

Avec une jauge à eau:

- détermination du débit et de la hauteur
- comparaison entre débit théorique et débit mesuré

Les grandes lignes

- Répartition de la pression le long d'un dos de déversoir à crête arrondie

Les caractéristiques techniques

Tubes de manomètre

- plage de mesure: 430mmCE

Dimensions et poids Lxlxh: 620x304x430mm

Poids: env. 15kg

Liste de livraison

1 déversoir, 1 jeu d'accessoires, 1 notice

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM162.35

HM 162.35 Éléments de dissipation d'énergie (Réf. 070.16235)

Dissipation d'énergie après un déversoir à crête arrondie, Nécessite le HM 162.32

Lorsqu'un écoulement supercritique se trouve juste après un ouvrage de contrôle, il est très chargé en énergie, et peut donc provoquer des dommages sur le fond du canal. Des bassins d'amortissement et des éléments tels que blocs de chute, seuils dentés ou seuils d'extrémité permettent de dissiper cette énergie cinétique, ce qui a un effet sur la position du ressaut.

Les seuils d'extrémité sont utilisés pour créer un bassin d'amortissement et maintenir le ressaut à une position précise.

Les éléments de dissipation d'énergie du HM 162.35 sont utilisés en association avec le déversoir à crête arrondie HM 162.32.

Tous les composants à étudier sont montés sur une plaque de fondation.

Le bloc de chute du HM 162.35 est installé à la place d'un évacuateur dans le HM 162.32.

Les seuils d'extrémité et les seuils dentés du HM 162.35 peuvent être installés individuellement ou en association en aval du déversoir.

Contenu didactique / Essais

- comparaison des effets de différents éléments de dissipation d'énergie
- -- blocs de chute
- -- seuils dentés
- -- seuils d'extrémité
- observation du ressaut sans et avec seuils d'extrémité et dentés

Les grandes lignes

- Dissipation d'énergie après un déversoir à crête arrondie

Caractéristiques techniques

Bloc de chute

- Lxlxh: 304x123x153,5mm

Seuil dextrémité

- Lxlxh: 304x50x55mm - Lxlxh: 304x50x110mm

Seuils dentés

Lxlxh: 304x50x55mmdents, lxh: 30x40mm

Plaque de base

- écart entre les 2 positions de montage: 50mm

Dimensions et poids

Lxlxh: 1400x304x15mm (plaque de fondation)

Poids total: env. 19kg

Liste de livraison

1 bloc de chute, 3 seuils dentés, 2 seuils d'extrémité, 1 plaque de fondation, 1 jeu d'accessoires, 1 notice

requis

HM 162.32 Déversoir à crête arrondie avec deux évacuateurs

HM 162 Canal d'essai 309x450mm

GSDE s.a.r.l. 181 Rue Franz Liszt - F 73000 CHAMBERY

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM162.36

HM 162.36 Deversoir à siphon (Réf. 070.16236)

Analyses la capacité de décharge du déversoir du siphon avec et sans ventilation

Les déversoirs à siphon comptent parmi les déversoirs fixes.

Ils sont utilisés pour l'évacuation de crues sur les barrages et présentent une capacité d'évacuation spécifique élevée.

Les déversoirs à siphon « se mettent en action » dès que le niveau de l'eau du lac artificiel atteint une hauteur déterminée.

On assiste alors à un écoulement en charge dans le conduit entièrement traversé.

Cet écoulement en charge a une capacité d'évacuation élevée, qui est supérieure à la capacité d'évacuation au niveau de la nappe dénoyée.

Lorsque le niveau de l'eau baisse à nouveau, de l'air est aspiré dans le siphon.

Ce qui interrompt brusquement la colonne d'eau.

Le déversoir à siphon transparent HM 162.36 dispose d'une aération permettant de comparer le fonctionnement ou la capacité d'évacuation du déversoir à siphon avec et sans aération.

L'aération permet également d'interrompre à tout moment le débit dans le siphon actif.

Contenu didactique / Essais

- principe de fonctionnement d'un déversoir à siphon
- débit d'un déversoir à siphon
- comparaison entre écoulement tubulaire et chute libre dans un déversoir à siphon

Les grandes lignes

- Déversoir à siphon avec aération en option

Les caractéristiques techniques

Déversoir à siphon

- matériau: PMMA

- section d'écoulement avec plage de débit

BxH: 284x60mm

Dimensions et poids Lxlxh: 620x304x430mm

Poids: env. 10kg

Liste de livraison

1 déversoir à siphon, 1 jeu d'accessoires, 1 notice

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 15.12.2025

Ref: EWTGUHM162.38

HM 162.38 Dégrilleur (Réf. 070.16238)

avec différents profils de barres ou différents angles d'inclinaison

Les dégrilleurs sont utilisés devant les centrales hydrauliques et dans les stations d'épuration pour retenir les saletés grossières susceptibles d'endommager l'installation.

De la même façon que les piles, ils rétrécissent la section d'écoulement.

Ce qui permet de produire une retenue. Cette retenue peut être plus ou moins faible ou élevée, selon le diamètre intérieur, le profil des barres et leur degré d'inclinaison.

Sur le dégrilleur HM 162.38, il est possible de modifier la résistance d'écoulement du dégrilleur en utilisant différents profils de barres ou en faisant varier leur degré d'inclinaison. Trois jeux de barres avec des profils différents sont à disposition.

Contenu didactique / Essais

- comportement de l'écoulement dans des canaux en cas d'étranglement de la section d'écoulement
- -- écoulement sous-critique
- -- écoulement supercritique
- détermination de coefficients de perte
- -- influence du profil de barre
- -- influence de l'inclinaison du dégrilleur
- détermination des coefficients de forme des profils de barre

Les grandes lignes

- Pertes locales au niveau du dégrilleur

Les caractéristiques techniques

Dégrilleur

- nombre de barres amovibles: 11

- inclinaison des barres: 40°...90°, gradation: 5°

Barres

- 3 profils: rectangulaire, circulaire, à corps profilé

- matériau des barres: PVC

Dimensions et poids Lxlxh: 375x304x360mm

Poids: env. 15kg

Liste de livraison

1 bâti, 3 jeux de barres, 1 jeu d'accessoires, 1 notice

Date d'édition: 15.12.2025

Ref: EWTGUHM162.40

HM 162.40 Vanne radiale (Réf. 070.16240)

Écoulement dénoyé (libre) et écoulement noyé (avec retenue) sous une vanne radiale

Les vannes radiales font partie des ouvrages de contrôle mobiles; l'écoulement les traverse par dessous.

L'élément principal de la vanne radiale est une paroi ayant la forme d'un segment circulaire qui produit une retenue dans un canal traversé par un écoulement.

Les vannes radiales sont souvent utilisées en association avec un ouvrage de contrôle fixe, p.ex. un déversoir à seuil épais.

Ces associations sont typiques dans les barrages. Elles permettent d'ajuster et réguler le débit du canal selon les besoins.

L'ouverture de la vanne radiale HM 162.40 et donc la décharge en dessous de la vanne peut être réglée manuellement.

Contenu didactique / Essais

- écoulement dénoyé (libre) sous une vanne radiale
- écoulement noyé (avec retenue) sous une vanne radiale
- observation de la contraction de jet (Vena Contracta)
- observation des ressauts dans l'eau en aval

Les grandes lignes

- Écoulement par dessous une vanne radiale

Les caracteristiques techniques

Vanne

- plaque de déversoir en acier inoxydable,

largeur: 304mm

- rayon du segment: 450mm

Dimensions et poids Lxlxh: 600x304x850mm

Poids: env. 14kg

Liste de livraison

1 corps de déversoir

1 jeu d'accessoires

1 notice

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 15.12.2025

Ref: EWTGUHM162.41

HM 162.41 Générateur de vagues, ondes de surface grâce à une plaque pivotante (Réf.

070.16241)

Accessoire conseillé: HM 162.80

Les ondes de surface sont générées par une plaque de refoulement qui exécute un mouvement pivotant.

La plaque est entraînée par un moteur avec convertisseur de fréquence par le biais dun système bielle-manivelle.

Leffort du système bielle-manivelle est ajustable en continu.

Le moteur est posé et vissé sur la section dessai du canal dessai HM 162.

La plaque de refoulement est vissée sur le fond.

Laccessoire est automatiquement identifié par IAPI.

La fréquence de la plaque de refoulement est réglée et directement affichée sur lécran tactile de IAPI du canal dessai HM 162.

Les essais avec vagues se font uniquement en labsence découlement.

Contenu didactique / Essais

- observation des vagues: les différentes formes de vagues
- avec les accessoires:

absorption et réflexion des forces des vagues sur différentes plages (HM 162.80) comportement des vagues sur des piles (HM 162.46)

Les grandes lignes

- génération dondes de surface
- commande via lécran tactile à HM 162

Les caracteristiques techniques

Moteur

- puissance: 0,55kW

vitesse de rotation: 1375min-1
vitesse de sortie: 0?110min-1
Système bielle-manivelle
course: 60?200mm

- fréquence

Alimentation 400V, 50Hz, 3 phases

Dimensions et poids

Lxlxh: 450x400x315mm (sans tige de poussée)

Poids: env. 65kg

Necessaire au fonctionnement 400V, 50/60Hz, 3 phases

Liste de livraison

1 générateur de vagues

1 jeu d'accessoires

1 notice

Date d'édition: 15.12.2025

requis

HM 162 Canal d'essai 309x450mm

en option Absorption des vagues HM 162.80 Jeu de plages Autres essais HM 162.46 Jeu de piles, sept profils

Ref: EWTGUHM162.44

HM 162.44 Seuil (Réf. 070.16244)

Simulation d'un haut-fond, les seuils provoquent un étranglement de la section d'écoulement

Les seuils servent à aplanir la pente d'un canal et donc à réduire les processus d'érosion au fond du canal. Ils ont habituellement la forme d'une marche en amont.

Les dispositifs de montaison sont souvent constitués de petits seuils.

Les fondations des piles de pont peuvent avoir le même effet qu'un seuil.

Les seuils provoquent un étranglement de la section d'écoulement.

Le seuil HM 162.44 permet d'observer le comportement d'un écoulement dans des canaux en présence d'un étranglement de section.

Contenu didactique / Essais

- comportement de l'écoulement dans des canaux en cas d'étranglement de la section d'écoulement

Les grandes lignes

- Étranglement de la section d'écoulement dans le canal

Les caractéristiques techniques

Inclinaison de l'élément d'entrée/sortie: env. 15°

Matériau: PVC

Dimensions et poids Lxlxh: 1020x304x70mm

Poids: env. 10kg

Liste de livraison

1 seuil, 1 jeu d'accessoires, 1 notice

Date d'édition: 15.12.2025

Ref: EWTGUHM162.45

HM 162.45 Passage (Réf. 070.16245)

Observation de l'écoulement et l'apparition des ressauts dans deux corps de canal différents

Les passages font partie des ouvrages de croisement dans les eaux courantes et permettent le passage de l'eau.

Il peut s'agir d'un tuyau qui passe en dessous d'une route, permettant ainsi à l'eau de la traverser.

Le passage peut être, selon le débit rencontré, partiellement rempli ou entièrement traversé.

Le passage partiellement rempli avec surface libre est considéré comme un canal ouvert, tandis que le passage entièrement traversé correspond à un écoulement tubulaire.

Le passage entièrement traversé et le passage sur lequel l'entrée est complètement submergée font eux partie des ouvrages de contrôle.

On a ici une limitation du débit.

On peut aussi avoir une association des deux états, si bien que le passage est en partie entièrement traversé, et en partie partiellement rempli.

Le passage HM 162.45 comprend deux sections différentes présentant la même surface.

Le matériau transparent permet de bien observer l'écoulement et l'apparition des ressauts dans le passage.

Un dispositif de serrage permet de fixer le passage dans le canal d'essai.

Contenu didactique / Essais

- comportement de l'écoulement dans des canaux en cas d'étranglement de la section d'écoulement
- entrée libre ou étranglée en direction du passage
- sortie avec débit libre ou endigué
- différentes formes de coupes transversales du passage
- -- section rectangulaire
- -- section circulaire

Les grandes lignes

- Passage entièrement traversé et passage partiellement rempli

Les caractéristiques techniques

Sections de passage

- cercle, D intérieur: 150mm
- rectangulaire, lxh: 133x133mm

Dimensions et poids

Lxlxh: 1200x320x430mm

Poids: env. 21kg

Liste de livraison

1 passage, 1 jeu d'accessoires, 1 notice

Date d'édition: 15.12.2025

Ref: EWTGUHM162.46

HM 162.46 Jeu de piles, sept profils (Réf. 070.16246)

Simulation de piliers de ponts dans un cours d'eau, étranglement de section latéral dans le canal

Les obstacles présents dans le canal réduisent la section d'écoulement.

Il peut donc se produire une retenue de l'eau devant les obstacles.

Le HM 162.46 comprend plusieurs piles avec différents profils caractéristiques des piles de pont. On étudie avec une seule pile le comportement d'écoulement en cas d'étranglement de section faible. Jusqu'à trois piles installées en même temps permettent d'obtenir un étranglement de section important. Il est possible d'étudier l'influence de l'angle d'incidence en tournant la pile installée.

Un dispositif de serrage permet de fixer la ou les pile(s) dans le canal d'essai.

Une échelle indique l'angle entre les pointes de la pile et l'écoulement.

Contenu didactique / Essais

- écoulement sous-critique avec étranglement de section faible ou important
- écoulement supercritique avec étranglement de section faible ou important
- influence du profil de la pile
- retenue devant des piles
- changement d'écoulement au niveau de la pile
- influence de l'angle d'incidence

Les grandes lignes

- Étranglement de section latéral dans le canal

Les caractéristiques techniques Piles en PVC Échelle angulaire

- 0...90°

- définition: 15°

Dimensions et poids

Lxlxh: 340x110x320mm (fixation)

Poids: env. 30kg

Liste de livraison

1 jeu de piles avec différents profils, 1 fixation avec dispositif de serrage, 1 jeu d'accessoires, 1 notice

Date d'édition : 15.12.2025

Ref: EWTGUHM162.50

HM 162.50 Tube de Prandtl pour détermination de la vitesse d'écoulement (Réf. 070.16250)

Mesure de pression avec affichage numérique. Nécessite le HM 162.59

Le tube de Prandtl HM 162.50 est un dispositif de mesure de la vitesse d'écoulement dans le canal d'essai HM 162. Il mesure la pression statique et la pression totale au point souhaité de l'écoulement.

Le différentiel de pression entre la pression statique et la pression totale correspond à la pression dynamique à partir de laquelle on peut calculer la vitesse d'écoulement.

Un affichage de la pression différentielle indique la pression dynamique.

Le tube de Prandtl peut être déplacé verticalement.

Une échelle indique la position verticale correspondante de la mesure.

Le HM 162.50 est monté sur le support pour instruments mobile HM 162.59 et peut ainsi être utilisé sur toute la longueur et la largeur de la section d'essai.

Les grandes lignes

- Détermination de la vitesse d'écoulement par le tube de Prandtl

Les caractéristiques techniques

Échelle

- 0...450mm

- graduation: 1mm

Plage de mesure

- pression différentielle: 0...140mbar,

définition: 0,1mbar

Dimensions et poids

Lxlxh: env. 300x300x900mm

Poids: env. 5kg

Liste de livraison

1 tube de Prandtl

1 jeu d'accessoires

1 notice

Accessoires disponibles et options HM162.59 - Support pour instruments

Date d'édition : 15.12.2025

Ref: EWTGUHM162.51

HM 162.51 Canal Venturi (Réf. 070.16251)

Mesure du débit dans des écoulements et des canaux avec un canal jaugeur typique

On détermine le débit d'un canal à l'aide de canaux jaugeurs.

Les canaux Venturi de mesure sont des canaux de forme spéciale présentant un rétrécissement latéral défini, et un fond partiellement profilé.

Le rétrécissement retient le débit.

La retenue assure la formation d'un écoulement sous-critique dans le canal.

L'accélération et le passage à un écoulement supercritique ont lieu dans le rétrécissement.

Dans la section la plus étroite, on a un écoulement critique.

Un ressaut se produit dans l'élargissement du canal Venturi.

Le canal Venturi HM 162.51 est constitué principalement de deux éléments latéraux transparents et d'une plaque de fondation plane.

Les éléments latéraux transparents permettent une observation optimale des processus qui se déroulent dans le canal.

Contenu didactique / Essais

En association avec une jauge à eau:

- mesure du débit dans des canaux ouverts

Les grandes lignes

- Canal jaugeur typique

Les caractéristiques techniques

Canal Venturi

- Lxlxh: 1000x304x450mm

- section la plus étroite, lxh: 152x430mm

Élément latéral

- Lxlxh: 828x76x430mm - matériau: PMMA

Dimensions et poids

Lxlxh: 1000x304x450mm

Poids: env. 25kg

Liste de livraison

2 éléments latéraux, 1 plaque de fondation, 1 dispositif de serrage, 1 jeu d'accessoires, 1 notice

Date d'édition : 15.12.2025

Ref: EWTGUHM162.52

HM 162.52 Jauge à eau, mesures la profondeur sur toute la longueur du canal (Réf. 070.162)

Nécessite le HM 162.59, prévoir 2 exemplaires

Pour de nombreux essais sur l'écoulement dans des canaux, il est important de connaître la profondeur de l'écoulement.

La jauge à eau HM 162.52 permet de mesurer la profondeur de l'écoulement.

L'élément principal du HM 162.52 est une pointe de contact ou un crochet.

L'instrument de mesure est déplacé verticalement.

La profondeur de l'écoulement est lue directement sur une échelle.

La pointe de contact est conçue de telle manière à ce que l'on puisse bien observer la manière dont elle touche la surface de l'eau.

À la place de la pointe de contact, on peut aussi utiliser un crochet.

La pointe du crochet brise par le bas la surface de l'eau afin de mesurer la profondeur de l'écoulement.

Le HM 162.52 est monté sur le support pour instruments mobile HM 162.59 et peut ainsi être utilisé sur toute la longueur et la largeur de la section d'essai.

Les grandes lignes

- Accessoire pour la mesure des niveaux d'eau

Les caractéristiques techniques

Échelle

- plage de mesure: 0...450mm

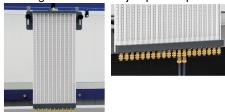
- graduation: 1mm

Longueur max. du déplacement: 450mm

Dimensions et poids Lxlxh: 85x60x830mm Poids: env. 1kg

Liste de livraison 1 jauge à eau 1 jeu d'accessoires 1 notice

Accessoires disponibles et options HM162.59 - Support pour instruments



Date d'édition : 15.12.2025

Ref: EWTGUHM162.53

HM 162.53 Manomètre à dix tubes (Réf. 070.16253)

Affichage simultané de jusqu'à dix profondeurs de l'écoulement le long de la section d'essai

Pour de nombreux essais sur l'écoulement dans des canaux, il est important de connaître la profondeur de l'écoulement.

Il est possible à l'aide du HM 162.53 de mesurer et d'afficher simultanément la profondeur de l'écoulement à dix positions différentes.

Jusqu'à dix points de mesure le long de la section d'essai du HM 162 sont reliés aux manomètres à tubes au moyen de flexibles.

Des échelles situées sur les manomètres affichent directement la profondeur de l'écoulement à chacun de ces points de mesure.

La fixation des manomètres à tubes peut être accrochée directement sur la section d'essai.

La fixation est pourvue d'un niveau à bulle et de vis permettant de compenser l'inclinaison de la section d'essai. Il est possible d'utiliser plusieurs manomètres à dix tubes en même temps pour pouvoir afficher l'évolution de la profondeur de l'écoulement sur toute la longueur de la section d'essai.

Les grandes lignes

- Affichage simultané des dix profondeurs de l'écoulement le long de la section d'essai

Les caractéristiques techniques

Plage de mesure

- 0... 460mmCE, graduation: 1mm

Dimensions et poids Lxlxh: 310x180x570mm

Poids: env. 3kg (sans les flexibles)

Liste de livraison

1 tableau des manomètres

1 jeu de flexibles

1 notice

gunt.fr

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM162.55

HM 162.55 Canal Parshall (Réf. 070.16255)

Mesure du débit dans des écoulements et des canaux avec un canal jaugeur typique

Les méthodes les plus couramment utilisées pour déterminer le débit dans un canal sont les canaux jaugeurs et les déversoirs de mesure.

Pour les deux méthodes, il existe une dépendance fixe entre la profondeur de l'écoulement et la capacité d'évacuation.

Les canaux jaugeurs sont principalement utilisés dans les stations d'épuration, car ils sont bien adaptés aux eaux polluées.

Leur maintenance ne pose aucun problème.

Les canaux Parshall sont des canaux Venturi ayant un fond profilé.

Les rapports entre rétrécissement et élargissement sont définis.

Les canaux Parshall sont disponibles dans le commerce accompagnés d'une courbe de débit (débit en fonction de la profondeur de l'eau en amont).

Ils sont très répandus en Amérique du Nord.

Le canal Parshall HM 162.55 est constitué principalement de deux éléments latéraux transparents et de la plaque de fondation profilée.

Les éléments latéraux transparents permettent une observation optimale des processus qui se déroulent dans le canal.

Contenu didactique / Essais

En association avec une jauge à eau:

- mesure du débit dans des canaux ouverts

Les grandes lignes

- Canal jaugeur typique

Les caractéristiques techniques

Canal Parshall (2")

- section la plus étroite, lxh: 50,8x114mm

Élément latéral

- Lxlxh: 900x126,5x300mm

- matériau: PMMA

Plaque de base

- Lxlxh: 1090x304x60mm

- matériau: PVC

Dimensions et poids

Lxlxh: 1090x304x310mm (sans dispositif de serrage)

Poids: env. 25kg

Liste de livraison

1 canal Parshall, 1 dispositif de serrage, 1 jeu d'accessoires, 1 notice

Date d'édition : 15.12.2025

Ref: EWTGUHM162.57

HM 162.57 Système d'ajustage électrique de l'inclinaison pour HM 162 / HM 163 (Réf. 070.16257)

Recommandé pour une longueur de canal > 7.5 m

La section dessai du canal dessai du HM 162/HM 163 est inclinable.

La hauteur du vérin de stabilisation est ajustée manuellement avec une roue à main par le biais dun entraînement à broche.

Lajustage de linclinaison peut être modifié pour obtenir un entraînement à broche avec moteur dentraînement électrique.

Le HM 162/HM 163 peut à tout moment être complété avec le HM 162.57.

Le HM 162.57 est constitué essentiellement du moteur dentraînement et dun coffret de commande.

Après connexion au coffret de commande du HM 162/HM 163, laccessoire est automatiquement identifié dans IAPI. Dajustage électrique de linclinaison est commandé via lécran tactile de l'API de HM 162/HM 163.

Les grandes lignes

- système électrique dajustage de linclinaison pour le HM 162/HM 163
- commande via lécran tactile à HM 162/HM 163

Les caracteristiques techniques

Moteur dentraînement

- puissance du moteur: 1,1kW
- vitesse de rotation: 935min-1

Entraînement à broche (dans le HM 162/HM 163)

- rapport de transmission i=24:1
- course: 0,25mm/tour ou 233mm/min

Dimensions et poids Poids: env. 20kg

Liste de livraison

1 moteur

1 coffret de commande

1 jeu d'accessoires

1 notice

Accessoires requis

HM 162 Canal d'essai 309x450mm

ou

HM 163 Canal d'essai 409x500mm

Date d'édition: 15.12.2025

Ref: EWTGUHM162.59

HM 162.59 Support pour instruments à déplacer sur toute la longueur du canal (Réf. 070.16259)

pour le tube de Prandtl HM 162.50 ou la jauge à eau HM 162.52

L'accessoire HM 162.59 est utilisé d'comme support pour instruments, par ex. pour le tube de Prandtl HM 162.50 ou la jauge à eau HM 162.52.

Ce support permet de déplacer l'instrument à pratiquement n'importe quel endroit de l'écoulement.

Le support pour instruments est constitué d'un bâti qui accueille l'instrument.

Ce cadre peut être déplacé sur des roulettes sur toute la longueur de la section d'essai.

Le bâti peut également être déplacé sur des glissières vers la position souhaitée à la perpendiculaire de l'écoulement.

Pour déterminer la position de l'instrument utilisé, on utilise des échelles.

Le support pour instruments a une échelle intégrée avec aiguille qui se trouve à la perpendiculaire de la direction de l'écoulement.

Parallèlement à la direction de l'écoulement, une aiguille du support indique la position sur l'échelle du canal d'essai.

Les grandes lignes

- Support pour instruments qui peut être déplacé sur toute la longueur de la section d'essai

Les caractéristiques techniques

Trajets

- dans la direction de l'écoulement: toute la longueur de la section d'essai
- dans la direction transversale à l'écoulement: +/-146mm

Dimensions et poids Lxlxh: 440x350x130mm

Poids: env. 5kg

Liste de livraison

1 support pour instruments

1 notice

Accessoires disponibles et options

HM162.50 - Tube de Prandtl

HM162.52 - Jauge à eau

HM162.64 - Appareil de mesure de vitesse

HM162.91 - Jauge à eau numérique

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM162.61

HM 162.61 Pilotes vibrants, pilot unique ou 2 pilots (Réf. 070.16261)

Observation d'une allée de tourbillons de Karman ou vibrations couplées

Les jetées ou les plateformes de forage sont en général construites sur des pilots situés dans l'eau.

L'eau en écoulement exerce des forces sur la partie des pilots se trouvant sous la surface de l'eau, ce qui peut provoquer des oscillations.

Les vibrations peuvent entraîner la défaillance d'un élément.

Les vibrations sont le résultat de l'interaction entre l'eau et le pilot.

Il est possible par exemple que l'allée de tourbillons de Karman se forme lors de l'écoulement autour du pilot.

Le détachement de ces tourbillons entraîne une modification de la direction de l'écoulement.

Dans le pire des cas, la fréquence de détachement des tourbillons correspond à la fréquence propre du pilot.

Le HM 162.61 permet d'observer un pilot vibrant unique.

Il comporte en outre deux piliers parallèles positionnés à la perpendiculaire de l'écoulement et qui se mettent à vibrer sous l'effet de l'écoulement.

La distance entre les pilots est modifiable.

Lorsque la distance est très faible, on assiste à des vibrations couplées des deux pilots.

Contenu didactique / Essais

- vibration d'un pilot unique
- -- observation d'une allée de tourbillons de Karman
- -- influence du diamètre de la barre
- -- influence des masses supplémentaires
- vibrations couplées entre 2 pilots

Les grandes lignes

- Vibrations d'un pilot unique ou de deux pilots parallèles dans un écoulement

Les caractéristiques techniques

Barres individuelles: 540mm de long, en PVC

- D=8mm
- D=10mm
- D=12mm

Poids

- 3x 100g
- 1x 40g (support)

Barres pour la vibration de 2 pilots parallèles:

- 2x D=8mm

Dimensions et poids

Lxlxh: 200x70x20mm (fixation des pilots parallèles)

Poids: env. 3kg

Liste de livraison

5 barres, 1 fixation pour pilots parallèles, 1 support pour poids, 3 poids, 1 jeu d'accessoires, 1 notice

Date d'édition: 15.12.2025

Ref: EWTGUHM162.63

HM 162.63 Canal trapézoïdal pour la mesure de débit dans les écoulements (Réf. 070.16263)

et canaux avec un canal jaugeur typique, mieux adaptés aux faibles débits

Les méthodes les plus couramment utilisées pour déterminer le débit dans un canal sont les canaux jaugeurs et les déversoirs de mesure.

Pour les deux méthodes, il existe une dépendance fixe entre la profondeur de l'écoulement et le débit.

Les canaux jaugeurs sont principalement utilisés dans les stations d'épuration, car ils sont bien adaptés aux eaux polluées.

Leur maintenance ne pose aucun problème.

Les canaux trapézoïdaux font également partie des canaux jaugeurs.

La section d'écoulement est triangulaire ou trapézoïdale avec des parois lisses.

Comparé aux canaux Parshall, ils présentent souvent une perte de hauteur de pression inférieure pour un débit identique et sont mieux adaptés aux faibles débits.

Le canal trapézoïdal HM 162.63 a une section d'écoulement en forme de trapèze.

Les parois transparentes permettent une observation optimale des processus qui se déroulent dans le canal.

Contenu didactique / Essais

En association avec une jauge à eau:

- mesure du débit dans des canaux ouverts

Les grandes lignes

- Canal jaugeur typique

Les caractéristiques techniques

Canal trapézoïdal

- section la plus étroite, lxh: 20x90mm

- matériau: PMMA

- Lxlxh: 390x304x165mm

Dimensions et poids

Lxlxh: 550x304x165mm

Poids: env. 8kg

Liste de livraison

1 canal trapézoïdal, 1 jeu d'accessoires, 1 notice

Accessoires requis:

HM 162 Canal d'essai 309x450mm

Date d'édition : 15.12.2025

Ref: EWTGUHM162.64

HM 162.64 Appareil de mesure de vitesse d'écoulement (Réf. 070.16264)

Nécessite le HM 169.59

L'élément principal du tachymètre HM 162.64 est une roue à ailettes qui tourne sous l'effet de l'écoulement.

La vitesse de rotation de la roue à ailettes est proportionnelle à la vitesse d'écoulement.

La vitesse d'écoulement est relevée directement numériquement.

La roue à ailettes peut être déplacée verticalement.

Une échelle indique la position verticale correspondante de la mesure.

Le HM 162.64 est monté sur le support pour instruments mobile HM 162.59 et peut ainsi être utilisé sur toute la longueur et la largeur de la section d'essai.

Les grandes lignes

- Détermination de la vitesse d'écoulement

Les caractéristiques techniques

Échelle

- 0...450mm

- graduation: 1mm

Plage de mesure

- vitesse d'écoulement: 0,04...5m/s

Dimensions et poids Lxlxh: 100x50x830mm

Poids: env. 3kg

Liste de livraison

1 tachymètre

1 jeu d'accessoires

1 notice

Accessoires disponibles et options HM162.59 - Support pour instruments

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 15.12.2025

Ref: EWTGUHM162.71

HM 162.71 Circuit fermé pour alimentation de sédiments dans des canaux ouverts (Réf. 070.16271)

Transport par charriage, roulement et saltation, formation et déplacement des rides et des dunes

Les écoulements dans les rivières, canaux et zones côtières sont souvent accompagnés dun transport de sédiments.

Il sagit avant tout du transport par charriage, durant lequel des matières solides se déplacent dans le fond du canal. Le HM 162.71 traite du transport par charriage et se compose dun piège à sédiments, dun alimentateur en sédiments et dun système de conduites avec pompe pour réacheminer, entre deux essais, le mélange composé deau et de sédiments depuis le piège jusquà lalimentateur en sédiments.

Le circuit de sédiments et le circuit deau du HM 162 sont deux systèmes indépendants lun de lautre.

Ce qui permet déviter que des sédiments ne pénètrent dans la pompe ou dans le débitmètre du circuit deau du canal dessai HM 162.

Au début de lessai, on installe un lit de sédiments dans la section dessai en labsence découlement deau.

Ensuite, on active le circuit deau. Laccessoire est automatiquement identifié par IAPI.

La pompe à sédiments est commandée par lécran tactile de IAPI de HM 162.

Leau qui sécoule transporte les sédiments près du lit, le long de la section dessai.

Ce transport par charriage est bien visible.

Une crépine située dans le réservoir deau en dessous de lélément de sortie du canal dessai du HM 162 sert de piège à sédiments.

Une pompe placée dans la crépine réachemine le mélange eau-sédiments de la crépine jusquà lalimentateur en sédiments.

Le mélange eau-sédiments a une grande teneur deau.

Lalimentateur en sédiments est descendu dans la section dessai et libère les sédiments près du lit.

On peut modifier comme on le souhaite la hauteur de lalimentation en sédiments au-dessus du fond du canal. Pour enlever le sédiment du canal après la fin dessai, le mélange eau-sédiments est transporté sur le tamis dans le 2ème réservoir deau.

Le HM 162.71 nest pas adapté aux essais sur le transport des sédiments en suspension.

Le HM 162 peut à tout moment être complété avec le HM 162.71.

Contenu didactique / Essais

- observation du transport par charriage au fond du canal roulement et saltation
- formation et déplacement des rides et des dunes
- avec le HM 162.29 ou le HM 162.46 marques dobstacle fluviales

Les grandes lignes

- Transport par charriage dans des canaux ouverts
- commande la pompe à sédiments via lécran tactile à HM 162

Les caracteristiques techniques

Pompe

- puissance absorbée: 1,1kW

débit de refoulement max.: 36m3/hhauteur de refoulement max.: 11m

Crépine

-ouverture de maille du tamis: 0,3mm (49mesh)

- capacité: env. 120L

GSDE s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Tamis pour lenlèvement des sédiments

- ouverture de maille du tamis: 0,3mm (49mesh)

400V, 50Hz, 3 phases

Dimensions et poids

Lxlxh: 500x320x900mm (piège à sédiments)

Lxlxh: 2000x1000x180mm (tamis)

Poids total: env. 200kg

Necessaire au fonctionnement

400V, 50Hz, 3 phases

Sédiment: sable (taille de grain 1...2mm)

Liste de livraison

1 circuit de sédiments fermé

1 tamis

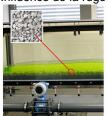
1 jeu daccessoires

1 notice

requis

HM 162 Canal d'essai 309x450mm

en option


HM 162.29 Vanne plane

HM 162.46 Jeu de piles, sept profils

Ref: EWTGUHM162.77

HM 162.77 Fond du canal avec galets (Réf. 070.16277)

Influence de la rugosité du fond du canal sur le comportement de l'écoulement

Le comportement d'écoulement d'une rivière dépend essentiellement, à débit égal, de la pente et de la rugosité du fond du canal.

Un écoulement normal, c'est-à-dire un écoulement uniforme dont la profondeur est constante, se transforme en écoulement irrégulier en cas de modification de la rugosité ou de la pente.

Le fond du canal HM 162.77 permet de modifier la rugosité du fond du canal.

Le canal d'essai HM 162 peut être incliné.

Contenu didactique / Essais

- principes de base de l'écoulement dans des canaux
- -- écoulement uniforme et écoulement irrégulier
- influence de la rugosité du fond du canal sur le comportement d'écoulement
- formules de débit

Les grandes lignes

- Principes de base de l'écoulement dans des canaux

Les caractéristiques techniques

Date d'édition: 15.12.2025

Fond du canal

- Lxlxh: 2500x304x70mm

Dimensions et poids

Lxlxh: 1250x304x70mm (1 élément)

Poids: env. 17kg (au total)

Liste de livraison

2 éléments, 1 jeu d'accessoires, 1 notice

Ref: EWTGUHM162.91

HM 162.91 Jauge à eau numérique (Réf. 070.16291)

Nécessite le HM 162.59

Pour de nombreux essais sur l'écoulement dans des canaux, il est important de connaître la profondeur de l'écoulement.

La jauge à eau HM 162.91 permet de mesurer la profondeur de l'écoulement.

L'élément principal du HM 162.91 est une pointe de contact ou un crochet.

L'instrument de mesure est déplacé verticalement.

La profondeur de l'écoulement est lue directement sur un affichage numérique.

La pointe de contact est conçue de telle manière à ce que l'on puisse bien observer la manière dont elle touche la surface de l'eau.

À la place de la pointe de contact, on peut aussi utiliser un crochet.

La pointe du crochet brise par le bas la surface de l'eau afin de mesurer la profondeur de l'écoulement.

Le HM 162.91 est monté sur le support pour instruments mobile HM 162.59 et peut ainsi être utilisé sur toute la longueur et la largeur de la section d'essai.

Les grandes lignes

- Accessoire pour la mesure des niveaux d'eau

Les caractéristiques techniques Plage de mesure: 0...600mm

- graduation: 0,01mm

Longueur max. du déplacement: 450mm

Dimensions et poids Lxlxh: 85x60x830mm Poids: env. 1kg

Liste de livraison 1 jauge à eau 1 jeu d'accessoires 1 notice

Accessoires disponibles et options HM162.59 - Support pour instruments

Date d'édition: 15.12.2025

Ref: EWTGUHM162.14

HM 162.14 Passerelle complète pour HM 162 (Réf. 070.16214)

pour une section d'essais du canal de 5 m

La galerie HM 162.14 pour le canal dessai HM 162 facilite dinsérer des accessoires dans le canal ou de les enlever.

Lutilisateur peut facilement accéder à chaque position de la section dessai.

La galerie se compose dune passerelle avec garde-corps et escalier.

Les surfaces accessibles sont équipées avec un sol non-glissant avec caillebotis.

Le coffret de commande du canal est monté dans le bâti de la galerie.

La HM 162.14 est conçue pour le canal dessai avec une section dessai dune longueur de 5m.

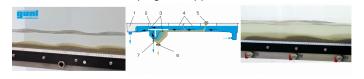
La galerie peut être agrandie par ladjonction déléments de rallonge HM 162.15 par étapes de 2,5m.

La galerie HM 162.14 est montée directement au moment de linstallation du canal dessai.

Il nest pas possible de la monter plus tard.

Dimensions et poids

Lxlxh: 8000x1300x2600mm


Poids: env. 900kg

Ref: EWTGUHM162.72

HM 162.72 Piège à sédiments (Réf. 070.16272)

les sédiments sont retirés manuellement du piège et rapportés au niveau de l'alimentateur

Les écoulements dans les rivières, canaux et zones côtières sont souvent accompagnés dun transport de sédiments.

Il sagit avant tout du transport par charriage, durant lequel des matières solides se déplacent dans le fond du cours deau.

Le HM 162.72 permet la réalisation dessais sur le transport par charriage et se compose dun piège à sédiments et dun seau pour lalimentation en sédiments.

Le piège à sédiments évite que des sédiments ne pénètrent dans la pompe ou dans le débitmètre du canal dessai HM 162.

Lécoulement près du lit, qui contient les sédiments, est conduit dans le piège où les sédiments coulent en direction du sol et sy saccumulent.

Leau libérée des sédiments continue alors de couler dans lélément de sortie.

Les sédiments sont retirés manuellement à laide dun robinet-vanne du piège et rapportés au niveau de lalimentateur.

Le HM 162.72 nest pas adapté aux essais sur le transport des sédiments en suspension.

Le piège à sédiments est monté directement au moment de linstallation du canal dessai, entre la section dessai et lélément de sortie.

Date d'édition : 15.12.2025

Il nest pas possible de le monter plus tard.

Contenu didactique / Essais

- -observation du transport par charriage au fond du canal roulement et saltation
- formation et déplacement des rides et des dunes
- avec le HM 162.29 ou le HM 162.46 marques dobstacle fluviales

Les grandes lignes

- Transport par charriage dans des canaux ouverts

Les caracteristiques techniques

Piège à sédiments en acier inoxydable, capacité: env. 85L

Dimensions et poids

Lxlxh: 1000x430x1300mm (piège)

Poids: env. 240kg

Necessaire au fonctionnement

sédiments: sable (1?2mm taille de grain) réservoir collecteur, raccord deau, drain

Liste de livraison

1 piège à sédiments, 1 jeu d'accessoires, 1 notice

requis

HM 162 Canal d'essai 309x450mm

en option

HM 162.73 Alimentateur en sédiments

HM 162.29 Vanne plane

HM 162.46 Jeu de piles, sept profils

Produits alternatifs

HM 162.71 Circuit de sédiments fermé

Date d'édition: 15.12.2025

Ref: EWTGUHM162.73

HM 162.73 Alimentateur en sédiments par le biais d'une goulotte vibrante (Réf. 070.16273)

à utiliser avec le piège à sédiments HM 162.72

Lalimentateur en sédiments est constitué principalement dune goulotte dalimentation vibrante qui dépose les sédiments dans la section dessai du HM 162.

Lalimentateur est habituellement monté au-dessus de lentrée de la section dessai.

On utilise comme sédiments du sable ayant une taille de grain de 1?2mm.

Lalimentateur est monté sur une estrade accessible installée à côté du canal dessai.

Lestrade présente lavantage déviter que les vibrations de lalimentateur ninfluent sur la section dessai.

Laccessoire est automatiquement identifié par IAPI.

La commande de lalimentateur et le réglage de lintensité des vibrations se font par lintermédiaire de lécran tactile dAPI de HM 162.

Le HM 162.73 nest pas adapté aux essais sur le transport des sédiments en suspension.

Le HM 162.73 est utilisé avec le piège à sédiments HM 162.72.

Contenu didactique/essais

- observation du transport par charriage au fond du canal roulement et saltation
- formation et déplacement des rides et des dunes
- avec le HM 162.29 ou le HM 162.46 marques dobstacle fluviales

Les grandes lignes

- alimentation en sédiments par le biais dune goulotte dalimentation vibrante
- commande via lécran tactile à HM 162

Les caractéristiques techniques

Alimentateur

- débit dalimentation: 0,5m3/h

- fréquence: 3600min-1

Contenance de lentonnoir: 50L Hauteur destrade: env. 1900mm

Hauteur sous plafond recommandée: 4,5m

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 1500x500x1050mm (alimentateur)

Poids: env. 250kg (alimentateur) Lxlxh: 3800x1700x2900mm (estrade)

Poids: env. 450kg (estrade)

Necessaire au fonctionnement

230V, 50/60Hz, 1 phase

Sédiments: sable (taille de grain 1...2mm)

Liste de livraison

1 alimentateur

1 estrade

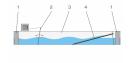
Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

1 jeu daccessoires

1 notice

Accessoires requis HM 162 Canal d'essai 309x450mm HM 162.72 Piège à sédiments


en option HM 162.29 Vanne plane HM 162.46 Jeu de piles, sept profils

Ref: EWTGUHM162.80

HM 162.80 Jeu de Plages (Réf. 070.16280)

Déferlement des vagues sur les plages, simulation de plages d'inclinaisons différentes

Le HM 162.80 est utilisé en association avec le générateur de vagues HM 162.41 pour étudier le déferlement des vagues sur différentes plages.

Le HM 162.80 étudie différents types de plages: une plage perméable ou une plage imperméable, une plage lisse ou une plage rugueuse.

L'inclinaison de la plage étudiée peut être modifiée pour observer le déferlement des vagues dans différentes conditions.

Contenu didactique / Essais

Avec le générateur de vagues HM 162.41:

- réflexion des vagues sur
- -- une plage lisse imperméable
- -- une plage rugueuse imperméable
- -- une plage perméable
- influence de l'inclinaison de la plage
- influence de la profondeur de l'eau
- comparaison de la brisure des vagues et du déferlement des vagues sur des surfaces différentes

Les grandes lignes

- Plage lisse imperméable, plage rugueuse imperméable et plage perméable

Les caractéristiques techniques Surface de la plage, Lxl: 1260x304mm

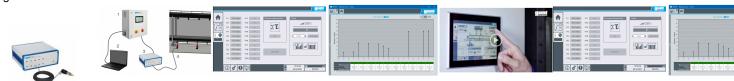
Dimensions et poids Lxlxh: 1300x304x480mm

Poids: env. 40kg

Liste de livraison

3 surfaces de plage, 1 jeu d'accessoires, 1 notice

Date d'édition: 15.12.2025


Accessoires disponibles et options HM162.41 - Générateur de vagues

Ref: EWTGUHM162.13

HM 162.13 Mesure électronique de la pression, 10x 0...50mbar avec caisse de rangement (Réf.

070.162

Logiciel et câble USB

Pour de nombreux essais sur lécoulement dans des canaux, il est important de connaître la profondeur de lécoulement.

À laide du HM 162.13, la profondeur de lécoulement peut être enregistrée sous la forme de la hauteur de pression.

Pour cela, lamplificateur de mesure est connecté au coffret de commande du HM 162 ou du HM 163 et identifié automatiquement par un API.

Selon lessai, jusquà dix points de mesure sélectionnés peuvent être connectés le long de la section dessai du HM 162 ou du HM 163.

Les valeurs mesurées sont transmises à un PC via une connexion par bus CAN.

Lattribution des capteurs de pression aux points de mesure permet de représenter lévolution des hauteurs de pression le long de la section dessai dans le logiciel. Lenregistrement du débit permet de représenter la hauteur de pression en fonction du débit.

Il est possible dutiliser un second amplificateur de mesure HM 162.13 en même temps afin dafficher les hauteurs de pression sur 20 points de mesure de la section dessai.

Les grandes lignes

- affichage simultané de dix hauteurs de pression le long de la section dessai du HM 162 ou du HM 163
- un deuxième amplificateur de mesure peut être connecté en plus

Les caractéristiques techniques

Plages de mesure

pression: 10x 0? 100 mbar, correspond à 0?1000 mmCA

débit: 1x 5,4?130m3/h

Dimensions et poids

système de rangement: amplificateur de mesure: Lxlxh: 600x400x285mm système de rangement: capteur de pression : Lxlxh: 600x400x235mm

Poids: env. 17kg (total)

Liste de livraison

1 amplificateur de mesure

10 capteurs de pression avec câble

1 jeu daccessoires

1 logiciel GUNT + câble USB

1 système de rangement

1 notice

Date d'édition : 15.12.2025

Accessoires requis HM 162 Canal d'essai 309x450mm ou HM 163 Canal d'essai 409x500mm

Ref: EWTGUHM162.15

HM 162.15 Element de rallonge pour passerelle HM 162.14 longueur 2.5 mètre (Réf. 070.16215)

pour des sections d'essai de 7,5m, 10m ou 12,5m

La galerie HM 162.14 pour le canal dessai HM 162 peut être agrandie par ladjonction déléments de rallonge HM 162.15 par étapes de 2,5m.

Lélément de rallonge se compose dune passerelle avec garde-corps.

La passerelle est équipée avec un sol non-glissant avec caillebotis.

Les éléments de rallonge sont montés directement au moment de linstallation de la galerie.

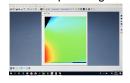
Il nest pas possible de les monter plus tard.

Dimensions et poids

Lxlxh: 2500x1060x2030mm

Poids: env. 300kg

Ref: EWTGUHM162.81


HM 162.81 Système PIV - Vélocimétrie par Image de Particules pour canal hydraulique (Réf.

Évaluation des essais par traitement d'images à l'aide de la vélocimétrie par images de particules

Un système PIV (Particle Image Velocimetry) permet denregistrer des champs de vitesse dans la section dessai. Laccessoire HM 162.81 contient un système complet avec technique de nappe lumineuse, caméra et synchroniseur. Ce système est adapté aux mesures découlement bidimensionnelles.

Les LED servent de source de lumière.

Contrairement au laser, elles sont utilisées sans dispositifs de sécurité.

Une lentille est utilisée pour élargir la lumière en une nappe lumineuse.

La source de lumière fonctionne en continu pour permettre lobservation de lécoulement.

La source de lumière est déclenchée de manière pulsée pour permettre la représentation et lanalyse des champs de vitesse.

Une caméra placée devant la section dessai prend des photos des particules dans lécoulement. GSDE s.a.r.l.

Date d'édition: 15.12.2025

La source de lumière et la caméra sont commandées simultanément par le synchroniseur.

Le résultat est immédiatement affiché dans le logiciel et peut y être évalué.

Un ordinateur portable avec des logiciels préinstallés fait partie de la liste de livraison.

Pour les essais dans lesquels la source de lumière doit être installée au-dessus du canal dessai, le support pour instruments HM 162.82 peut être utilisé en option.

Pour les essais dans lesquels la source lumineuse doit être placée sous le canal dessai, une vitre en verre HM 162.83 est disponible pour le fond du canal dessai.

La vitre en verre intégrée fait partie du canal dessai HM 162 et doit être considérée au moment de la conception.

Il nest pas possible de la monter plus tard.

Les grandes lignes

- accessoires pour la visualisation des champs de vitesse

Les caractéristiques techniques

Technique de nappe lumineuse

- source de lumière: LED, couleur de la lumière: verte
- système de lentilles: nappe lumineuse denviron 100x100mm
- opération: lumière continue/pulsée

Caméra

- -résolution: 2048x2048 pixels - taille de pixel: 5,5x5,5µm
- objectif: 35mm
- taux de rafraîchissement: 30 images/sec., à intervalles de 200µs
- filtre: longueur donde 532nm +/- 3nm

Synchroniseur

- résolution: 5ns
- taux de répétition des impulsions: 0,047Hz à 10MHz

Ordinateur portable

- logiciel pour représentation et analyse
- 1 licence dutilisation

Particules de polyamide, adaptées à leau

- blanches
- Ø 57µm
- densité de 1,016g/cm3

Nécessaire pour le fonctionnement

HM 162.82 Support pour instruments du système PIV ou HM 162.83 Vitre en verre pour système PIV

Dimensions et poids Lxlxh: 500x500x500mm

Poids: env. 25kg

Liste de livraison

1x Technique de nappe lumineuse avec source de lumière LED

1x caméra, synchroniseur

1x ordinateur portable + logiciel,

1x jeu de particules de polyamide (100g)

Accessoires

requis

HM 162 Canal d'essai 409x500mm

HM 162.82 Support pour instruments du système PIV

en option

HM 162.83 Vitre en verre pour système PIV

Date d'édition: 15.12.2025

Ref: EWTGUHM162.82

HM 162.82 Support pour instruments du système PIV (Réf. 070.16282)

Laccessoire HM 162.82 est destiné à servir de support au système PIV HM 162.81.

Le support pour instruments est constitué dun bâti qui est placé au-dessus de la section dessai.

Une source de lumière peut être insérée dans le bâti pour éclairer les particules de lécoulement.

Une caméra peut également être positionnée dans le bâti.

Pour obtenir des images optimales, la surface de lécran fixé au bâti présente de bonnes propriétés de contraste.

Le support pour instruments peut être déplacé sur des roulettes sur toute la longueur de la section dessai.

La caméra peut également être déplacée verticalement.

La source de lumière peut être déplacée sur des rails coulissants perpendiculairement à lécoulement.

Le support pour instruments est équipé dune échelle intégrée avec pointeur pour déterminer les positions transversales à la direction découlement.

Parallèlement à la direction découlement, le support pour instruments est pourvu dun pointeur qui indique la position sur léchelle du canal dessai.

Les grandes lignes

- support pour instruments mobile sur toute la section dessai avec fixation pour la caméra et pour la source de lumière
- écran comme surface de contraste pour les images de la caméra

Les caracteristiques techniques

- support pour instruments: dans la direction découlement sur toute la section dessai
- source de lumière utilisée: perpendiculaire à la direction découlement
- caméra utilisée: verticale

Nécessaire pour le fonctionnement HM 162.81 Système PIV

Liste de livraison 1 support pour instruments

Accessoires requis HM 162 Canal d'essai 309x450mm HM 162.81 Système PIV

Date d'édition : 15.12.2025

Ref: EWTGUHM162.83

HM 162.83 Vitre en verre pour système PIV (Réf. 070.16283)

A commander avec le canal HM 162, ne peut être installé ultérieurement

Laccessoire HM 162.83 est une vitre en verre pour le canal dessai HM 162, qui est destinée à être utilisée avec un système PIV, par ex. le HM 162.81.

La vitre en verre intégrée dans le fond du canal dessai permet de positionner une source de lumière (laser ou LED) en dessous de la section dessai.

Lincidence de la lumière pour lillumination des particules est donc indépendante des perturbations causées par une surface de leau en mouvement.

La vitre en verre est située dans la partie centrale de la section dessai et présente une géométrie rectangulaire. La position, les dimensions et la géométrie de la vitre en verre peuvent diverger.

La vitre en verre intégrée fait partie du canal dessai HM 162 et doit être considérée au moment de la conception.

Il nest pas possible de la monter plus tard.

Les grandes lignes

- vitre en verre intégrée dans le fond du canal dessai HM 162
- utilisation avec un système PIV, par ex, le HM 162.81

Les caracteristiques techniques

- Vitre en verre pour HM 162

Lxl: 180x300mm

épaisseur du verre: 8mm

Dimensions et poids Lxlxh: 180x300x8mm Poids: env. 1,08kg

Nécessaire pour le fonctionnement

HM 162 Canal dessai et système PIV par ex. HM 162.81

Liste de livraison 1 vitre en verre

Accessoires requis HM 162 Canal d'essai 309x450mm HM 162.81 Système PIV*

Produits alternatifs

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: EWTGUHM160

HM 160 Canal d'essai 86x300mm (Réf. 070.16000)

Les voies navigables, la régulation des fleuves et les ouvrages de retenue font partie des sujets traités par le génie hydraulique.

Des canaux d'essai installés dans le laboratoire aident à en assimiler les principes de base.

Le canal d'essai HM 160 dispose d'un circuit d'eau fermé.

La coupe transversale de la section d'essai est de 86x300mm.

La section d'essai a une longueur de 2,5m, ou de 5m en y ajoutant la rallonge HM 160.10.

Les parois latérales de la section d'essai sont en verre renforcé permettant l'observation optimale des essais.

Tous les composants en contact avec l'eau sont fabriqués dans des matériaux résistants à la corrosion (acier inoxydable, plastique renforcé de fibres de verre).

L'élément d'entrée est conçu de façon à minimiser les turbulences de l'écoulement à son arrivée dans la section d'essai.

Afin de permettre la simulation de chutes et l'ajustement d'un écoulement uniforme ayant une profondeur constante, il est possible contrôler en continu l'inclinaison du canal d'essai.

De nombreux modèles sont disponibles comme accessoires.

Il s'agit par exemple: des déversoirs, piles, canaux de mesure ou un générateur de vagues.

Ce qui permet de réaliser un ensemble d'essais complet.

La plupart des modèles se vissent rapidement et de manière sécurisée au fond de la section d'essai.

Contenu didactique / Essais

- écoulement uniforme et écoulement non uniforme
- formules de débits
- changement découlement (ressaut)
- avec les modèles disponibles comme accessoires, on étudie les phénomènes suivants écoulement au-dessus des ouvrages de contrôle: déversoirs (à paroi mince, à crête déversante, à crête arrondie)

écoulement sous des ouvrages de contrôle: vannes (vanne plane, vanne radiale)

- dissipation dénergie (ressaut, bassin damortissement)
- modifications de la coupe transversale
- canal jaugeur
- écoulement non stationnaire: vagues
- pilots vibrants
- transport des sédiments

Les grandes lignes

- Principes de base de l'écoulement dans les canaux
- Section d'essai avec parois latérales transparentes, disponible avec une longueur de 2,5m ou 5m
- Écoulement homogène grâce à un élément d'entrée très bien conçu
- Modèles dans tous les domaines du génie hydraulique sont disponibles comme accessoires

Les caractéristiques techniques

Section dessai

- longueur: 2,5m ou 5m (avec 1x HM 160.10)
- section découlement lxh: 86x300mm
- système dajustage de linclinaison: -0,5?+3%

GSDE s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Réservoir: 280L

Pompe

- débit de refoulement dans la section dessai max.: 10m3/h

- débit de refoulement de la pompe max.: 15m3/h
- auteur de refoulement de la pompe max.: 21m

Plages de mesure débit: 0?10m3/h

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 4310x670x1350mm (section dessai 2,5m)

Poids: env. 254kg

Liste de livraison

1 canal d'essai

1 documentation didactique

en option

Ouvrages de contrôle

HM 160.29 Vanne plane

HM 160.40 Vanne radiale

HM 160.30 Jeu de déversoirs à paroi mince, quatre types

HM 160.31 Déversoir à seuil épais

HM 160.33 Déversoir cunéiforme

HM 160.36 Déversoir à siphon

HM 160.34 Déversoir à crête arrondie avec mesure de pression

HM 160.32 Déversoir à crête arrondie avec deux évacuateurs

HM 160.35 Éléments de dissipation d'énergie

Modification de la coupe transversale

HM 160.44 Seuil

HM 160.45 Passage

HM 160.46 Jeu de piles, sept profils

HM 160.77 Fond du canal avec galets

Canaux jaugeurs

HM 160.51 Canal Venturi

Autres essais

HM 160.41 Générateur de vagues

HM 160.80 Jeu de plages

HM 160.61 Pilots vibrants

HM 160.72 Piège à sédiments

HM 160.73 Alimentateur en sédiments

Instruments de mesure

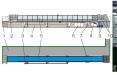
HM 160.52 Jauge à eau

HM 160.91 Jauge à eau numérique

HM 160.64 Appareil de mesure de vitesse

HM 160.50 Tu

Date d'édition : 15.12.2025


Ref: EWTGUHM161

HM 161 Canal d'essai hydraulique 600x800mm, circuit eau fermé, inclinaison réglable (Réf.

070.1610)

Longueur totale: 21m, longueur utile 16 m

Le canal d'essai HM 161 est le plus grand dans cette catégorie de produits GUNT.

Les vitesses d'écoulement pouvant être atteintes dans le canal d'essai ainsi que la longueur importante de la section d'essai sont des conditions optimales pour la conception de projets individuels.

Ces projets peuvent en effet se rapprocher au plus près de la réalité.

La section d'essai a une longueur de 16m et une coupe transversale de 600x800mm.

Les parois latérales de la section d'essai sont en verre trempé permettant l'observation optimale des essais.

Tous les composants en contact avec leau sont fabriqués dans des matériaux résistants à la corrosion (acier inoxydable, plastique renforcé de fibres de verre).

L'élément d'entrée est conçu de telle manière à minimiser les turbulences de l'écoulement à son arrivée dans la section d'essai.

Le circuit d'eau fermé est constitué dune série de réservoirs d'eau et de deux pompes de forte puissance.

Les réservoirs sont intégrés à l'installation de telle manière qu'ils peuvent aussi servir de galerie dans laquelle il est possible de se tenir.

L'utilisateur peut ainsi accéder facilement à n'importe quel endroit de la section d'essai.

Afin de permettre la simulation de chutes et l'ajustage dun écoulement uniforme ayant une profondeur constante, le canal d'essai est équipé dun système dajustage de l'inclinaison motorisé.

De nombreux modèles sont disponibles en tant qu'accessoires, tels que des déversoirs, piles, canaux de mesure ou un générateur de vagues.

Ce qui permet de réaliser un ensemble d'essais très complet.

La plupart des modèles se vissent rapidement et de manière sécurisée au fond de la section d'essai.

Le canal d'essai dispose de fonctions très complètes de mesure, de réglage et de commande qui sont pilotées par un API.

Deux écrans tactiles librement positionnable affichent les valeurs de mesure et les états de fonctionnement et permettent de commander l'installation.

Les valeurs de mesure sont transmises simultanément à un écran de 32 pour l'affichage à distance.

Via l'API, les valeurs de mesure peuvent être enregistrées en interne.

L'accès aux valeurs de mesure enregistrées est possible à partir des terminaux via WLAN avec routeur intégré/connexion LAN au réseau propre au client.

Via connexion LAN directe, les valeurs de mesure peuvent également être transmises à un PC afin dy être exploitées à l'aide du logiciel GUNT.

Contenu didactique / Essais

- écoulement uniforme et écoulement non uniforme
- formules de débits
- changement d'écoulement (ressaut)
- avec les modèles disponibles comme accessoires, on étudie les phénomènes suivants

écoulement au-dessus des ouvrages de contrôle: déversoirs (à paroi mince, à crête déversante, à crête arrondie)

écoulement sous des ouvrages de contrôle: vannes (vanne plane, vanne radiale)

dissipation dénergie (ressaut, bassin damortissement)

modifications de la coupe transversale

canal jaugeur

écoulement non stationnaire: vagues

pilots vibrants

GSDE s.a.r.l.

Date d'édition: 15.12.2025

transport des sédiments

Les grandes lignes

- Section d'essai avec parois latérales transparentes, longueur de 16m
- Écoulement homogène grâce à un élément d'entrée très bien conçu
- Modèles de tous les domaines du génie hydraulique disponibles comme accessoires

Caractéristiques techniques

Section d'essai, longueur: 16m - section d'écoulement lxh: 600x800mm

- 3 vérins de levage à vis

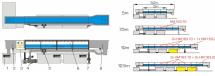
- système d'ajustage de linclinaison: -0,75?+2,1%

Réservoirs: 1x 3600L, 4x 4300L

2 pompes

- débit de refoulement, section dessai max.: 400m3/h - débit de refoulement max.: 228m3/h, par pompe - hauteur de refoulement max.: 35m, par pompe

Plages de mesure - débit: 0?400m3/h - inclinaison: -0


Ref: EWTGUHM163

HM 163 Canal d'essai 409x500mm (Réf. 070.16300)

Si 7.5m (1xHM163.10) / 10m (2xHM163.10+1xHM163.20) / 12.5m (3xHM163.10+2xHM163.20)

Dans les domaines de lenseignement et de la recherche, les canaux dessai sont utilisés pour observer et analyser les phénomènes découlement dans des canaux à léchelle du laboratoire.

Par exemple, les structures de contrôle pour la régulation découlement et diverses méthodes de mesure de lécoulement sont démontrées.

Le canal dessai HM 163 possède un circuit deau fermé et une section expérimentale extensible.

Les parois latérales de la section dessai sont en verre trempé permettant lobservation optimale des essais.

Tous les composants en contact avec leau sont fabriqués dans des matériaux résistants à la corrosion.

Lélément dentrée est conçu de telle manière à minimiser les turbulences de lécoulement à son arrivée dans la section dessai.

Afin de permettre la simulation de chutes et lajustage dun écoulement uniforme ayant une profondeur constante, il est possible dajuster en continu linclinaison du canal dessai.

De nombreux modèles sont disponibles en tant quaccessoires, tels que des déversoirs, piles, canaux de mesure ou un générateur de vagues.

Ce qui permet de réaliser un ensemble dessais très complet.

La plupart des modèles se vissent rapidement et de manière sécurisée au fond de la section dessai.

Le canal dessai est commandé par IAPI via un écran tactile.

Grâce à un routeur intégré, le canal dessai peut être alternativement commandé et exploité par un dispositif terminal.

Linterface utilisateur peut également être affichée sur des terminaux supplémentaires (screen mirroring).

Via IAPI, les valeurs de mesure peuvent être enregistrées en interne.

Laccès aux valeurs de mesure enregistrées est possible à partir des terminaux via WLAN avec routeur intégré/ GSDE s.a.r.l.

Date d'édition: 15.12.2025

connexion LAN au réseau propre au client.

Via connexion LAN directe, les valeurs de mesure peuvent également être transmises à un PC afin dy être exploitées à laide du logiciel GUNT.

Lutilisation dune caméra est nécessaire pour lobservation des essais dans le cadre de lapprentissage à distance.

Contenu didactique / Essais

- avec les modèles disponibles comme accessoires, on étudie les phénomènes suivants écoulement uniforme et écoulement non uniforme

formules de débit

changement découlement (ressaut)

dissipation dénergie (ressaut, bassin damortissement)

écoulement par des ouvrages de contrôle: déversoirs (à paroi mince, à crête déversante, à crête arrondie)

écoulement par des ouvrages de contrôle: écoulement en dessous de vannes

canal jaugeur

pertes locales dues à des obstacles écoulement non stationnaire: vagues

pilots vibrants

transport des sédiments

- screen mirroring: mise en miroir de linterface utilisateur sur des terminaux navigation dans le menu indépendante de la surface affichée sur lécran tactile différents niveaux dutilisateurs sélectionnables sur le terminal: pour lobservation des essais ou pour la commande et lutilisation

Les grandes lignes

- essais des principes de base aux projets de recherche, section dessai disponibles de 5m, 7,5m, 10m à 12,5m
- commande de linstallation par API intégré
- un routeur intégré pour lexploitation et le contrôle via un dispositif terminal et pour le screen mirroring sur des terminaux supplémentaires: PC, tablette, smartphone
- modèles de tous les domaines du génie hydraulique disponibles comme accessoires

Les caracteristiques techniques

Section dessai

- longueur possible: 5m-7,5m-10m-12,5m section découlement lxh: 409x500mm
- système dajustage de linclinaison: -0,5?+2,5%

3 réservoirs, en matière plastique renforcée de fibres de verre, 1100L chacun

Pompe

- puissance absorbée: 7,5kW

débit de refoulement max.: 130m3/h
hauteur de refoulement max.: 30m
vitesse de rotation: 2800min-1

Plages de mesure - débit: 5,4?130m3/h

400V, 50Hz,