

Date d'édition: 29.10.2025

Ref: EWTGUET220.10

ET 220.10 Appareil de commande pour éolienne ET 220.01 (Réf. 061.22010)

Avec interface PC USB et logiciel inclus, exploitation de du vent dans des conditions météo réelles

À l'échelle mondiale, la part des besoins énergétiques couverte par la production d'électricité éolienne est en forte augmentation.

La transformation de l'énergie cinétique du vent ainsi que l'exploitation et le stockage de la puissance électrique produite jouent à cet effet un rôle décisif.

Avec l'ET 220.10, on dispose d'un appareil de commande compact pour l'éolienne mobile ET 220.01.

L'énergie électrique de l'éolienne ET 220.01 est stockée dans le système insulaire ET 220.10 qui est indépendant du réseau électrique.

Le stockage intermédiaire de l'énergie électrique est assuré par un régulateur de charge dans un accumulateur intégré à l'ET 220.01.

Dès que l'accumulateur est chargé, l'énergie électrique excédentaire est consommée dans des résistances fixes.

Lorsque la tension de fin de charge est atteinte, cette protection contre les surcharges se déclenche; elle est indiquée par une LED sur le régulateur de charge.

L'éolienne continue de fonctionner même dans ces conditions et peut à nouveau mettre immédiatement à disposition de la puissance électrique en cas de nouveau besoin.

L'énergie électrique stockée dans l'accumulateur peut être consommée à l'intérieur du système insulaire à l'aide de charges électriques.

Deux lampes servent de consommateurs.

Le stockage dans un réseau électrique public n'est pas prévu.

Des capteurs enregistrent la vitesse du vent et la vitesse de rotation du rotor de l'ET 220.01, ainsi que le courant et la tension du système insulaire.

Les valeurs mesurées sont transmises vers un PC afin d'y être évaluées à l'aide du logiciel GUNT fourni.

La transmission des données au PC se fait par une interface USB.

Le logiciel GUNT compatible réseau permet l'observation, l'acquisition et l'évaluation des essais sur un nombre illimité de postes de travail via le réseau propre au client avec une seule licence.

La vitesse du vent et la vitesse de rotation du rotor sont également indiquées sur des affichages numériques.

On peut par ailleurs utiliser les multimètres du laboratoire pour mesurer le courant et la tension en se servant de connecteurs de laboratoire.

Contenu didactique / Essais avec l'éolienne ET 220.01:

- transformation de l'énergie cinétique du vent en énergie électrique
- comportement en service d'une éolienne dans des conditions météorologiques réelles
- composants, fonctionnement et construction d'un système insulaire avec une éolienne
- bilan énergétique d'un système insulaire avec une éolienne
- GUNT-E-Learning

cours multimédia en ligne sur les principes de base de l'énergie éolienne

Date d'édition: 29.10.2025

apprentissage indépendant du temps et du lieu accès via un navigateur Internet contrôle par un examen ciblé du contenu didactique

Les grandes lignes

- exploitation de l'énergie du vent en îlotage dans des conditions météorologiques réelles
- appareil de commande compact avec régulateur de charge et consommateurs électriques
- capacité de mise en réseau: observer, acquérir, évaluer des essais via le réseau propre au client

Caractéristiques techniques

Régulateur de charge - tension nominale: 12V

- puissance de charge max.: 14,2V

- courant max.: 40A

- procédure de régulation: MLI (ou PWM en anglais)

Charge électrique (2 lampes)

- tension: 12VCC - puissance: resp. 55W

Plages de mesure

- vitesse du vent: 0,3...50m/s

- vitesse de rotation: 0...3000min^-1^

- tension: 0...20VCC - intensité: 0...35A

Dimensions et poids Lxlxh: 1000x550x590mm

Poids: env. 47kg

Nécessaire au fonctionnement 230V, 50/60Hz, 1 phase PC avec Windows

Liste de livraison

1 appareil de commande

1 CD avec logiciel GUNT + câble USB

1 documentation didactique

Accessoires disponibles et options Accessoires requis ET 220.01 Éolienne

en option pour l'apprentissage à distance GU 100 Web Access Box ave

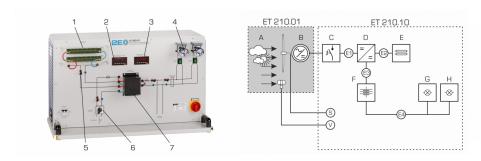
Catégories / Arborescence

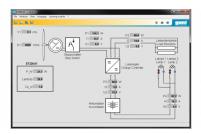
Formations > BTS MS > Systèmes éoliens

Techniques > Energie Environnement > Hydraulique - Eolien > Énergie éolienne Techniques > Mécanique des fluides > Machines motrices > Turbines éoliennes

Techniques > Mécanique des fluides > Appareils d'énergie de fluide hydrauliques > Turbines éoliennes

Techniques > Thermique > Energies Renouvelables > Énergie éolienne GSDE s.a.r.l.


181 Rue Franz Liszt - F 73000 CHAMBERY



HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

Options

Date d'édition : 29.10.2025

Ref: EWTGUET220.01

ET 220.01 Éolienne avec mat et chariot mobile (Réf. 061.22001)

Raccordement à ET 220 ou ET 220.10, montage en extérieur permet des analyses proches de la réalité

Le rendement d'une éolienne dépend des vitesses du vent et de l'exploitabilité du courant électrique produit. Pour étudier le fonctionnement d'une éolienne dans des conditions météorologiques réelles, on a développé l'ET 220.01. L'ET 220.01 peut être utilisé avec l'appareil d'essai ET 220 ou l'appareil de commande ET 220.10.

L'éolienne ET 220.01 est composée d'une nacelle ou gondole montée sur un mât pivotant sur socle stable et des appuis.

La vitesse de rotation du rotor et la vitesse du vent sont enregistrées.

Ces valeurs de mesure sont affichées sur l'appareil de commande et dans le logiciel de l'ET 220 ou ET 220.10.

L'intensité et la tension du générateur sont saisies sur l'appareil de commande de l'ET 220 ou ET 220.10.

Ici, on peut également raccorder la batterie fournie avec l'éolienne au moyen d'un régulateur de charge.

L'orientation du rotor dans le sens du vent se fait à l'aide d'une girouette située sur la nacelle.

Le moyeu du rotor comprend un régulateur de puissance mécanique fonctionnant au moyen d'un système de calage des pales.

À partir d'une vitesse de vent de 5m/s environ, l'éolienne se met à produire du courant continu.

Un redresseur est intégré à la nacelle.

Avant la mise en service, il faut raccorder l'ET 220.01 à l'appareil de commande de l'ET 220 ou ET 220.10.

Des câbles séparés sont prévus à cet effet pour les capteurs de mesure et le courant produit.

L'emplacement de l'éolienne ET 220.01 peut être facilement modifié.

Il suffit pour cela de démonter l'appareil et du déplacer ensuite tel quel sur des roulettes.

L'appareil est résistant aux intempéries, et peut donc être également utilisé durant plusieurs jours pendant des périodes de mauvais temps.

Contenu didactique / Essais

- transformation de l'énergie cinétique du vent en énergie électrique
- structure et fonction d'une éolienne en îlotage
- bilan énergétique d'une éolienne dans des conditions de vents réels
- GUNT E-Learning

cours multimédia en ligne sur les principes de base de l'énergie éolienne apprentissage indépendant du temps et du lieu accès via un navigateur Internet contrôle par un examen ciblé du contenu didactique

Les grandes lignes

- essais proches de la pratique dans des conditions de vents réels
- éolienne avec redresseur et régulateur mécanique de puissance
- montage facilité par des appuis amovibles et un mât pliant
- raccordement à l'ET 220 ou ET 220.10

Caractéristiques techniques

Rotor

- Ø 1200mm
- hauteur du moyeu au-dessus du sol: env. 5000mm

Génératrice

- puissance max.: 350W

Date d'édition: 29.10.2025

- tension: 12VCC

- courant de charge max.: 30A

Accumulateur - tension: 12VCC - capacité: 65Ah

Encombrement - Lxlxh: 10x6x6m

- distance max. de l'ET 220/ET 220.10: env. 20m

Plages de mesure

- vitesse du vent: 0,7?50m/s - vitesse de rotation: 0?3000min-1

Dimensions et poids

Lxlxh: 3500x3500x5600mm (avec supports)

Poids: env. 340kg

Liste de livraison

1 éolienne

1 pied de mât

1 mât

4 supports

1 accumulateur

1 jeu de vis

1 jeu d'outils

1 documentation didactique

Accessoires

requis

ET 220 Conversion de l'énergie dans une éolienne

ou

ET 220.10 Appareil de commande pour éolienne ET 220.01

Ref: EWTGUGU100

GU 100 Web Access Box (Réf. 010.10000)

Accessoire pour appareils GUNT permettant un enseignement et un apprentissage pratiques à distance

La GU 100 est un accessoire pour une sélection dappareils GUNT.

La Web Access Box permet un enseignement pratique à distance - Remote Learning via le réseau propre au client. Via un navigateur web, les essais sont observés par transmission dimages en direct, les états de fonctionnement de lappareil dessai sont suivis, les valeurs mesurées sont visualisées graphiquement et facilement enregistrées localement pour une évaluation plus complète.

La Web Access Box fonctionne comme un serveur.

Il prend la fonction dacquisition des données, transmet les commandes de contrôle et fournit toutes les informations GSDE s.a.r.l.

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

sur une interface logicielle.

Linterface logicielle est accessible à partir de tous les types de terminaux via un navigateur web, indépendamment du système.

Pour chaque appareil GUNT qui peut être étendu avec la Web Access Box, un logiciel spécifique est disponible: Web Access Box Software.

Le logiciel doit être acheté séparément pour chaque appareil.

La connexion de jusquà 10 terminaux à la Web Access Box est possible via WLAN, une connexion LAN directe ou en intégrant la Web Access Box dans le réseau propre au client.

Les terminaux connectés au réseau propre au client peuvent ainsi être utilisés pour lapprentissage à distance. La Web Access Box est connectée au appareil GUNT sélectionné via USB. La caméra IP fournie est connectée à la Web Access Box via LAN.

Contenu didactique / Essais

- avec le logiciel Web Access Box Software:

Apprentissage à distance - Web Access Box comme serveur, accès indépendant du système via un navigateur web

affichage du schéma du processus

affichage des états de fonctionnement

affichage de toutes les valeurs mesurées actuelles

transfert des valeurs mesurées enregistrées en interne pour une évaluation plus complète

observation en direct des essais

affichage graphique des résultats des essais

Les grandes lignes

- observation, acquisition et évaluation des essais via un navigateur web
- transmission dimages en direct via une caméra IP
- Web Access Box comme serveur avec module WLAN intégré pour connecter les terminaux: PC, tablette, smartphone

Les caracteristiques techniques

- Web Access Box

système dexploitation: Microsoft Windows 10

mémoire vive: 4GB mémoire: 120GB interfaces 4x USB 2x LAN 1x HDMI 1x MiniDP

1x mini-série

module WLAN intégré

- Caméra IP

connexion avec la Web Access Box via LAN

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 112x84x34mm (Web Access Box)

Poids: env. 0,5kg

Liste de livraison 1 Web Access Box 1 caméra IP

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

Ref: EWTGUET22010W

ET 22010W Web Access Software (Réf. 061.22010W)

Le logiciel Web Access Software permet de connecter lappareil dessai à la Web Access Box GU 100.

Dune part, le logiciel Web Access assure la configuration nécessaire de la Web Access Box et prend en charge léchange de données entre la Web Access Box et lappareil dessai.

Dautre part, il constitue le lien avec lutilisateur via linterface logicielle dans le navigateur web.

Le logiciel Web Access Software est fourni via un support de données.

Linterface logicielle est accessible via un navigateur web, indépendamment du lieu et du système.

Linterface logicielle offre différents niveaux dutilisation pour le suivi des essais et lacquisition des données.

Par exemple, le schéma de processus et les états de fonctionnement de lappareil dessai sont présentés.

Les essais peuvent être observés en temps réel grâce à la transmission dimages en direct de la caméra IP.

Les valeurs mesurées actuelles sont affichées.

Les résultats des essais sont affichés graphiquement pour une évaluation plus approfondie.

Les données de mesure peuvent être téléchargées via le logiciel et stockées localement.

Contenu didactique/essais

avec lappareil dessai: apprentissage à distance

interface logicielle avec

- schéma du processus
- états de fonctionnement
- valeurs mesurées actuelles
- transfert des valeurs mesurées
- transmission dimages en direct
- affichage graphique des résultats dessais

Les grandes lignes

- configuration spécifique de la Web Access Box GU 100
- accès indépendant du système à linterface logicielle via un navigateur web

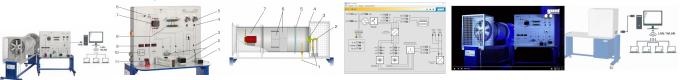
Caractéristiques techniques Support de données: carte SD Web Access Software indépendant du système connexion internet navigateur web format du fichier à télécharger: txt

Torrilat du licriici à telecitarger. txt

Liste de livraison 1 Web Access Software

Accessoires requis GU 100 Web Access Box ET 220 Conversion de l'énergie dans une éolienne

Produits alternatifs



Date d'édition : 29.10.2025

Ref: EWTGUET220

ET 220 Installation site isolé avec Eolienne (Réf. 061.22000)

Avec interface PC USB et logiciel inclus

Le ET 220 sert à étudier la conversion de l'énergie cinétique du vent en énergie électrique.

L'installation d'essai comporte une soufflerie et un appareil de commande.

La soufflerie comprend une éolienne qui est à l'échelle du laboratoire et un ventilateur axial.

Les éléments de base de l'éolienne sont, un rotor et un générateur.

L'appareil de commande comprend les éléments de commande du ventilateur axial, les composants de stockage de l'énergie électrique et les récepteurs du courant électrique.

Le ventilateur axial produit l'écoulement d'air nécessaire pour faire tourner le rotor.

Un stabilisateur d'écoulement permet d'obtenir un écoulement régulier et à faibles turbulences.

Un générateur convertit l'énergie cinétique du rotor en énergie électrique.

L'énergie électrique est absorbée par un système insulaire indépendant du réseau électrique.

Le stockage de l'énergie électrique a lieu dans un accumulateur via un régulateur de charge.

L'énergie électrique peut être consommée à l'aide de charges électriques.

Deux lampes font office de récepteurs du courant électrique.

Au choix, on peut également connecter un récepteur du courant électrique externe (par exemple une résistance chauffante).

Il n'est pas prévu d'alimenter un réseau électrique public.

La vitesse du vent est ajustée en faisant varier la vitesse de rotation du ventilateur.

On saisit les valeurs mesurées suivantes: vitesse du vent devant et derrière le rotor, vitesse de rotation du rotor, tension et intensité du courant.

Les valeurs mesurées sont affichées sous forme numérique et peuvent simultanément être transmises sur un PC par port USB et y être analysées grâce au logiciel GUNT fourni.

Le logiciel GUNT compatible réseau permet l'observation, l'acquisition et l'évaluation des essais sur un nombre illimité de postes de travail via le réseau propre au client avec une seule licence.

Un schéma de câblage imprimé sur l'appareil de commande permet de disposer aisément tous les composants au niveau du réseau insulaire.

Pour effectuer les essais dans des conditions de vent réelles, il est également possible de raccorder une plus grande éolienne (ET 220.01) à l'appareil de commande.

Cette éolienne est conçu pour être monté en extérieur.

Contenu didactique / Essais

- conversion de l'énergie cinétique en énergie électrique
- fonctionnement et construction d'un système insulaire avec une éolienne
- détermination du coefficient de puissance de l'éolienne en fonction de la vitesse spécifique (tip speed ratio (TSR) en anglais)
- bilan énergétique d'une éolienne
- détermination du rendement d'une éolienne
- GUNT-E-Learning

cours multimédia en ligne sur les principes de base de l'énergie éolienne apprentissage indépendant du temps et du lieu accès via un navigateur Internet

contrôle par un examen ciblé du contenu didactique

Les grandes lignes

- conversion de l'énergie cinétique du vent en énergie électrique
- essais adaptés pour l'expérimentation à l'échelle du laboratoire

181 Rue Franz Liszt - F 73000 CHAMBERY

Date d'édition : 29.10.2025

- capacité de mise en réseau: observer, acquérir, évaluer des essais via le réseau propre au client

Caractéristiques techniques

Soufflante axial

- débit volumétrique max.: 5m^3^/s

- puissance max.: 1,5kW

Rotor: Ø 510mm

Générateur

puissance max.: 60Wtension: 12VDC

- courant de charge max.: 5A

Accumulateur

tension: 12VDCcapacité: 8Ah

Charge électrique (lampes)

- tension: 12VDC

- puissance: 55W chacune

Plages de mesure

- vitesse du vent:1 ... 40m/s

- vitesse de rotation: 0?3000min-1

- tension: 0...20VDC

- courant: -25?25A; 0?32A

400V, 50Hz, 3 phases

Dimensions et poids

Lxlxh: 2600x880x1650mm (soufflerie)

Lxlxh: 1500x800x1750mm (appareil de commande)

Poids total: env. 380kg

Néc