

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

CT 100.11 Calorimètre pour gaz d'échappement pour CT 110 (Réf. 063.10011)

La détermination des pertes thermiques des gaz déchappement est nécessaire pour effectuer le bilan énergétique des moteurs à combustion interne.

La mesure calorimétrique est une méthode éprouvée dans ce domaine.

Il se produit un échange de chaleur pour ainsi dire complet et sans pertes entre les gaz déchappement et un fluide de refroidissement.

Le calorimètre pour gaz déchappement est constitué dun réservoir isolé en acier spécial traversé de bas en haut par les gaz d'échappement.

Lors de ce passage, les gaz déchappement transmettent leur chaleur presque complètement à un tube à ailettes que traverse leau de refroidissement.

Le tube est posé en boucle afin datteindre une surface de transmission de chaleur maximale.

Les températures importantes (entrée et sortie de l'eau, gaz d'échappement) et le débit de l'eau sont saisis électroniquement et affichés sous forme numérique sur un amplificateur.

Cet amplificateur est relié au banc dessai CT 110 par un câble de transmission des données.

Les données de mesure sont ainsi mémorisées et traitées à laide du logiciel d'acquisition de données du CT 110.

La liaison entre le CT 100.11 et un moteur de test (CT 100.20 à CT 100.23) est réalisée à laide dun tuyau pour gaz déchappement résistant à la chaleur.

Contenu didactique / Essais

- détermination de la puissance calorifique distribuée par les gaz déchappement
- détermination de la capacité thermique spécifique des gaz déchappement

Les grandes lignes

- échangeur de chaleur à contre-courant pour lanalyse calorimétrique des gaz déchappement de moteurs à combustion interne

Les caractéristiques techniques Calorimètre isolé, en acier inoxydable

Plages de mesure

- température:
- 2x 0?600°C (gaz déchappement)
- 2x 0?200°C (eau de refroidissement)

débit: 0?160L/h

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

Dimensions et poids

Lxlxh: 800x600x1620mm (calorimètre)

Lxlxh: 390x370x160mm (amplificateur de mesure)

Poids: env. 105kg

Nécessaire au fonctionnement

230V, 50/60Hz, 1 phase ou 120V, 60Hz/CSA, 1 phase

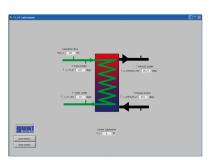
Raccord d'eau froide 200L/h et drain

Liste de livraison

1 calorimètre

1 amplificateur avec affichages numériques

1 tuyau pour gaz déchappement


1 câble de transmission des données pour liaison avec le CT 110

1 notice

requis

CT 110 Banc d'essai pour moteurs monocylindres, 7,5kW

GSDE s.a.r.l www.gsde.fr

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 29.10.2025

Options

Ref: EWTGUCT110

CT 110 Banc d'essai pour moteurs monocylindres, 7,5kW (Réf. 063.11000)

Livré avec un logiciel avec acquisition de données via USB

Ce banc dessai permet de mesurer la puissance des moteurs à combustion interne jusquà une puissance de 7,5kW. Le banc dessai complet se compose de deux éléments principaux: CT 110 comme unité de commande et de charge, et un moteur au choix: moteur essence quatre temps (CT 100.20), moteur essence deux temps (CT 100.21), ainsi que deux moteurs diesel quatre temps (CT 100.22, à injection directe, refroidi par air; CT 100.23, à injection indirecte, refroidi par eau).

La fonction principale du CT 110 est la mise à disposition de la puissance de freinage nécessaire.

Un moteur asynchrone refroidi par air, avec unité de récupération dénergie, sert densemble de freinage.

Le couple et la vitesse de rotation sont créés via un convertisseur de fréquence.

Grâce à la récupération de lénergie de freinage dans le réseau, on obtient un fonctionnement à haut rendement énergétique du banc dessai.

La mesure du couple seffectue à laide de lensemble de freinage, monté de manière flottante, et du capteur de force.

Le moteur est monté sur une fondation isolée des vibrations et raccordé au moteur asynchrone.

La masse élevée de la fondation, en combinaison avec le palier souple, garantit un fonctionnement particulièrement

Le moteur asynchrone est utilisé dans un premier temps pour démarrer le moteur.

Dès que le moteur fonctionne, le moteur asynchrone avec lunité de récupération dénergie sert dunité de freinage pour charger le moteur à combustion interne.

La puissance de freinage est alors réalimentée dans le réseau électrique.

En mode entraîné du moteur examiné, le moteur asynchrone est utilisé pour déterminer la perte par frottement du moteur.

Les réservoirs de carburant et un réservoir de stabilisation pour lair dadmission se trouvent dans la partie inférieure du châssis mobile.

La mesure de la consommation dair seffectue via une tuyère de mesure.

La consommation de carburant est mesurée via le niveau dans un tube vertical.

Le coffret de commande contient des affichages numériques pour la vitesse de rotation, le couple et les températures.

Les manomètres indiquent la dépression dadmission et la consommation dair.

Tous les signaux de mesure sont disponibles sous forme électrique, et peuvent être mémorisés et traités à laide du logiciel dacquisition de données fourni.

La transmission des données au PC se fait par une interface USB.

Contenu didactique / Essais

en combinaison avec un moteur (CT 100.20 à CT 100.23)

- enregistrement des courbes de couple et de puissance
- détermination de la consommation de carburant spécifique
- détermination du coefficient de rendement et du coefficient dair
- détermination de la perte par frottement du moteur (en mode entraîné)

Les grandes lignes

- unité de commande et de charge pour moteurs monocylindres à combustion interne jusquà 7,5kW
- moteur asynchrone comme unité de charge, utilisable également comme démarreur

GSDE s.a.r.l. 181 Rue Franz Liszt - F 73000 CHAMBERY

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.10.2025

- fondation isolée des vibrations pour recevoir le moteur

Les caractéristiques techniques Moteur asynchrone comme frein - puissance: env. 7,5kW à 2900min-1

Plages de mesure

- couple: -50?50Nm

- température: 0?900°C

- vitesse de rotation: 0?5000min-1

consommation de carburant: 50cm3/min
pression dadmission du moteur: -400?0mbar

- consommation dair: 0?690L/h

400V, 50Hz, 3 phases

Dimensions et poids Lxlxh: 1450x850x1880mm

Poids: env. 245kg

Nécessaire au fonctionnement ventilation, évacuation des gaz déchappement PC avec Windows recommandé

Liste de livraison

1 banc dessai (sans CT 100.22)

1 jeu doutils

1 jeu daccessoires

1 logiciel GUNT + câble USB

1 documentation didactique

Accessoires disponibles et options requis Moteurs CT 100.20 Moteur essence quatre temps pour CT 110 ou CT 100.21 Moteur essence deux temps pour CT 110 ou